Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.It is significant and feasible to utilize the big data to make better decisions by machine learning tech...Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.It is significant and feasible to utilize the big data to make better decisions by machine learning techniques. In this paper, we focus on batch reinforcement learning(RL) algorithms for discounted Markov decision processes(MDPs) with large discrete or continuous state spaces, aiming to learn the best possible policy given a fixed amount of training data. The batch RL algorithms with handcrafted feature representations work well for low-dimensional MDPs. However, for many real-world RL tasks which often involve high-dimensional state spaces, it is difficult and even infeasible to use feature engineering methods to design features for value function approximation. To cope with high-dimensional RL problems, the desire to obtain data-driven features has led to a lot of works in incorporating feature selection and feature learning into traditional batch RL algorithms. In this paper, we provide a comprehensive survey on automatic feature selection and unsupervised feature learning for high-dimensional batch RL. Moreover, we present recent theoretical developments on applying statistical learning to establish finite-sample error bounds for batch RL algorithms based on weighted Lpnorms. Finally, we derive some future directions in the research of RL algorithms, theories and applications.展开更多
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight...This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.展开更多
In the face of the increasingly severe Botnet problem on the Internet,how to effectively detect Botnet traffic in realtime has become a critical problem.Although the existing deepQnetwork(DQN)algorithminDeep reinforce...In the face of the increasingly severe Botnet problem on the Internet,how to effectively detect Botnet traffic in realtime has become a critical problem.Although the existing deepQnetwork(DQN)algorithminDeep reinforcement learning can solve the problem of real-time updating,its prediction results are always higher than the actual results.In Botnet traffic detection,although it performs well in the training set,the accuracy rate of predicting traffic is as high as%;however,in the test set,its accuracy has declined,and it is impossible to adjust its prediction strategy on time based on new data samples.However,in the new dataset,its accuracy has declined significantly.Therefore,this paper proposes a Botnet traffic detection system based on double-layer DQN(DDQN).Two Q-values are designed to adjust the model in policy and action,respectively,to achieve real-time model updates and improve the universality and robustness of the model under different data sets.Experiments show that compared with the DQN model,when using DDQN,the Q-value is not too high,and the detectionmodel has improved the accuracy and precision of Botnet traffic.Moreover,when using Botnet data sets other than the test set,the accuracy and precision of theDDQNmodel are still higher than DQN.展开更多
We improve inverse reinforcement learning(IRL) by applying dimension reduction methods to automatically extract Abstract features from human-demonstrated policies,to deal with the cases where features are either unkno...We improve inverse reinforcement learning(IRL) by applying dimension reduction methods to automatically extract Abstract features from human-demonstrated policies,to deal with the cases where features are either unknown or numerous.The importance rating of each abstract feature is incorporated into the reward function.Simulation is performed on a task of driving in a five-lane highway,where the controlled car has the largest fixed speed among all the cars.Performance is almost 10.6% better on average with than without importance ratings.展开更多
Reinforcement learning(RL) in real-world problems requires function approximations that depend on selecting the appropriate feature representations. Representational expansion techniques can make linear approximators ...Reinforcement learning(RL) in real-world problems requires function approximations that depend on selecting the appropriate feature representations. Representational expansion techniques can make linear approximators represent value functions more effectively; however, most of these techniques function well only for low dimensional problems. In this paper, we present the greedy feature replacement(GFR), a novel online expansion technique, for value-based RL algorithms that use binary features. Given a simple initial representation, the feature representation is expanded incrementally. New feature dependencies are added automatically to the current representation and conjunctive features are used to replace current features greedily. The virtual temporal difference(TD) error is recorded for each conjunctive feature to judge whether the replacement can improve the approximation. Correctness guarantees and computational complexity analysis are provided for GFR. Experimental results in two domains show that GFR achieves much faster learning and has the capability to handle large-scale problems.展开更多
An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over...An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.展开更多
With the increasing demand for the automation of operations and processes in mechatronic systems,fault detection and diagnosis has become a major topic to guarantee the process performance.There exist numerous studies...With the increasing demand for the automation of operations and processes in mechatronic systems,fault detection and diagnosis has become a major topic to guarantee the process performance.There exist numerous studies on the topic of applying artificial intelligence methods for fault detection and diagnosis.However,much of the focus has been given on the detection of faults.In terms of the diagnosis of faults,on one hand,assumptions are required,which restricts the diagnosis range.On the other hand,different faults with similar symptoms cannot be distinguished,especially when the model is not trained by plenty of data.In this work,we proposed a reinforcement learning system for fault detection and diagnosis.No assumption is required.Feature exaction is first made.Then with the features as the states of the environment,the agent directly interacts with the environment.Optimal policy,which determines the exact category,size and location of the fault,is obtained by updating Q values.The method takes advantage of expert knowledge.When the features are unclear,action will be made to get more information from the new state for further determination.We create recurrent neural network with the long short-term memory architecture to approximate Q values.The application on a motor is discussed.The experimental results validate that the proposed method demonstrates a significant improvement compared with existing state-of-the-art methods of fault detection and diagnosis.展开更多
基金supported by National Natural Science Foundation of China(Nos.61034002,61233001 and 61273140)
文摘Tremendous amount of data are being generated and saved in many complex engineering and social systems every day.It is significant and feasible to utilize the big data to make better decisions by machine learning techniques. In this paper, we focus on batch reinforcement learning(RL) algorithms for discounted Markov decision processes(MDPs) with large discrete or continuous state spaces, aiming to learn the best possible policy given a fixed amount of training data. The batch RL algorithms with handcrafted feature representations work well for low-dimensional MDPs. However, for many real-world RL tasks which often involve high-dimensional state spaces, it is difficult and even infeasible to use feature engineering methods to design features for value function approximation. To cope with high-dimensional RL problems, the desire to obtain data-driven features has led to a lot of works in incorporating feature selection and feature learning into traditional batch RL algorithms. In this paper, we provide a comprehensive survey on automatic feature selection and unsupervised feature learning for high-dimensional batch RL. Moreover, we present recent theoretical developments on applying statistical learning to establish finite-sample error bounds for batch RL algorithms based on weighted Lpnorms. Finally, we derive some future directions in the research of RL algorithms, theories and applications.
基金supported by the National Science and Technology Major Project (2021ZD0112702)the National Natural Science Foundation (NNSF)of China (62373100,62233003)the Natural Science Foundation of Jiangsu Province of China (BK20202006)。
文摘This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.
基金the Liaoning Province Applied Basic Research Program,2023JH2/101600038.
文摘In the face of the increasingly severe Botnet problem on the Internet,how to effectively detect Botnet traffic in realtime has become a critical problem.Although the existing deepQnetwork(DQN)algorithminDeep reinforcement learning can solve the problem of real-time updating,its prediction results are always higher than the actual results.In Botnet traffic detection,although it performs well in the training set,the accuracy rate of predicting traffic is as high as%;however,in the test set,its accuracy has declined,and it is impossible to adjust its prediction strategy on time based on new data samples.However,in the new dataset,its accuracy has declined significantly.Therefore,this paper proposes a Botnet traffic detection system based on double-layer DQN(DDQN).Two Q-values are designed to adjust the model in policy and action,respectively,to achieve real-time model updates and improve the universality and robustness of the model under different data sets.Experiments show that compared with the DQN model,when using DDQN,the Q-value is not too high,and the detectionmodel has improved the accuracy and precision of Botnet traffic.Moreover,when using Botnet data sets other than the test set,the accuracy and precision of theDDQNmodel are still higher than DQN.
文摘We improve inverse reinforcement learning(IRL) by applying dimension reduction methods to automatically extract Abstract features from human-demonstrated policies,to deal with the cases where features are either unknown or numerous.The importance rating of each abstract feature is incorporated into the reward function.Simulation is performed on a task of driving in a five-lane highway,where the controlled car has the largest fixed speed among all the cars.Performance is almost 10.6% better on average with than without importance ratings.
基金Project supported by the 12th Five-Year Defense Exploration Project of China(No.041202005)the Ph.D.Program Foundation of the Ministry of Education of China(No.20120002130007)
文摘Reinforcement learning(RL) in real-world problems requires function approximations that depend on selecting the appropriate feature representations. Representational expansion techniques can make linear approximators represent value functions more effectively; however, most of these techniques function well only for low dimensional problems. In this paper, we present the greedy feature replacement(GFR), a novel online expansion technique, for value-based RL algorithms that use binary features. Given a simple initial representation, the feature representation is expanded incrementally. New feature dependencies are added automatically to the current representation and conjunctive features are used to replace current features greedily. The virtual temporal difference(TD) error is recorded for each conjunctive feature to judge whether the replacement can improve the approximation. Correctness guarantees and computational complexity analysis are provided for GFR. Experimental results in two domains show that GFR achieves much faster learning and has the capability to handle large-scale problems.
文摘An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.
基金This work was supported by the Soft Science Research Program of Guangdong Province under Grant 2020A1010020013the National Defense Innovation Special Zone of Science and Technology Project under Grant 18-163-00-TS-006-038-01the National Natural Science Foundation of China under Grant 61673240.
文摘With the increasing demand for the automation of operations and processes in mechatronic systems,fault detection and diagnosis has become a major topic to guarantee the process performance.There exist numerous studies on the topic of applying artificial intelligence methods for fault detection and diagnosis.However,much of the focus has been given on the detection of faults.In terms of the diagnosis of faults,on one hand,assumptions are required,which restricts the diagnosis range.On the other hand,different faults with similar symptoms cannot be distinguished,especially when the model is not trained by plenty of data.In this work,we proposed a reinforcement learning system for fault detection and diagnosis.No assumption is required.Feature exaction is first made.Then with the features as the states of the environment,the agent directly interacts with the environment.Optimal policy,which determines the exact category,size and location of the fault,is obtained by updating Q values.The method takes advantage of expert knowledge.When the features are unclear,action will be made to get more information from the new state for further determination.We create recurrent neural network with the long short-term memory architecture to approximate Q values.The application on a motor is discussed.The experimental results validate that the proposed method demonstrates a significant improvement compared with existing state-of-the-art methods of fault detection and diagnosis.