Pavements constructed over loosely compacted subgrades may not possess adequate California bearing ratio (CBR) to meet the requirements of pavement design codes,which may lead to a thicker pavement design for addressi...Pavements constructed over loosely compacted subgrades may not possess adequate California bearing ratio (CBR) to meet the requirements of pavement design codes,which may lead to a thicker pavement design for addressing the required strength.Geosynthetics have been proven to be effective for mitigating the adverse mechanical behaviors of weak soils as integrated constituents of base and sub-base layers in road construction.This study investigated the behaviors of unreinforced and reinforced sand with nonwoven geotextile using repeated CBR loading test (followed by unloading and reloading).The depth and number of geotextile reinforcement layers,as well as the compaction ratio of the soil above and below the reinforcement layer(s) and the compaction ratio of the sand bed,were set as variables in this context.Geotextile layers were placed at upper thickness ratios of 0.3,0.6 and 0.9 and the lower thickness ratio of 0.3.The compaction ratios of the upper layer and the sand bed varied between 85% and 97% to simulate a dense layer on a medium dense sand bed for all unreinforced and reinforced testing scenarios.Repeated CBR loading tests were conducted to the target loads of 100 kgf,150 kgf,200 kgf and 400 kgf,respectively (1 kgf=9.8 N).The results indicated that placing one layer of reinforcement with an upper thickness ratio of 0.3 and compacting the soil above the reinforcement to compaction ratio of 97% significantly reduced the penetration of the CBR piston for all target repeated load levels.However,using two layers of reinforcement sandwiched between two dense soil layers with a compaction ratio of 97% with upper and lower thickness ratios of 0.3 resulted in the lowest penetration.展开更多
This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investig...This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.展开更多
Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These r...Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These restrictions can be alleviated by the use of reinforced soil. In this research study the use of geotextile to stabilize and increase the shear strength of clay soils has been investigated. The results show an increase of about 25% in shear strength and cause an enhancement of stability in sandy soil in earth dams.展开更多
The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils ...The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils that are capable of developing of water pressures. However, the use of granular materials can expend the cost of the construction. As a result, local soils, granular or not, have been increasingly used. Unsaturated conditions of fine soils may result in convenient performance even using extensible reinforcements. This paper evaluates the performance of a full scale model of a nonwoven geotextile reinforced wall constructed with fine grained soil backfill. The unsaturated condition was maintained and matric suctions, displacements and reinforcement strains were monitored during the test. Results have shown that the unsaturated condition of the backfill allowed maximum reinforcement peak strain of 0.4 %. For the case of a wrap faced wall on a firm foundation the performance and good agreement between measured strains and factors of safety from limit equilibrium analyses have shown the maintenance of unsaturated conditions as an economical alternative to the use of high quality fill.展开更多
文摘Pavements constructed over loosely compacted subgrades may not possess adequate California bearing ratio (CBR) to meet the requirements of pavement design codes,which may lead to a thicker pavement design for addressing the required strength.Geosynthetics have been proven to be effective for mitigating the adverse mechanical behaviors of weak soils as integrated constituents of base and sub-base layers in road construction.This study investigated the behaviors of unreinforced and reinforced sand with nonwoven geotextile using repeated CBR loading test (followed by unloading and reloading).The depth and number of geotextile reinforcement layers,as well as the compaction ratio of the soil above and below the reinforcement layer(s) and the compaction ratio of the sand bed,were set as variables in this context.Geotextile layers were placed at upper thickness ratios of 0.3,0.6 and 0.9 and the lower thickness ratio of 0.3.The compaction ratios of the upper layer and the sand bed varied between 85% and 97% to simulate a dense layer on a medium dense sand bed for all unreinforced and reinforced testing scenarios.Repeated CBR loading tests were conducted to the target loads of 100 kgf,150 kgf,200 kgf and 400 kgf,respectively (1 kgf=9.8 N).The results indicated that placing one layer of reinforcement with an upper thickness ratio of 0.3 and compacting the soil above the reinforcement to compaction ratio of 97% significantly reduced the penetration of the CBR piston for all target repeated load levels.However,using two layers of reinforcement sandwiched between two dense soil layers with a compaction ratio of 97% with upper and lower thickness ratios of 0.3 resulted in the lowest penetration.
文摘This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.
文摘Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These restrictions can be alleviated by the use of reinforced soil. In this research study the use of geotextile to stabilize and increase the shear strength of clay soils has been investigated. The results show an increase of about 25% in shear strength and cause an enhancement of stability in sandy soil in earth dams.
文摘The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils that are capable of developing of water pressures. However, the use of granular materials can expend the cost of the construction. As a result, local soils, granular or not, have been increasingly used. Unsaturated conditions of fine soils may result in convenient performance even using extensible reinforcements. This paper evaluates the performance of a full scale model of a nonwoven geotextile reinforced wall constructed with fine grained soil backfill. The unsaturated condition was maintained and matric suctions, displacements and reinforcement strains were monitored during the test. Results have shown that the unsaturated condition of the backfill allowed maximum reinforcement peak strain of 0.4 %. For the case of a wrap faced wall on a firm foundation the performance and good agreement between measured strains and factors of safety from limit equilibrium analyses have shown the maintenance of unsaturated conditions as an economical alternative to the use of high quality fill.