期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
神经元实时编码的分类和预测模型研究
1
作者 刘宇 王金华 《计算机工程与设计》 CSCD 北大核心 2010年第17期3868-3871,共4页
为了研究神经元放电的内在规律及解决传统线性分析方法不能对神经元采样数据进行有效分类的问题,提出了正则化线性判别分析法和最近收缩质心法。根据神经元数据自身的特点,设计了一个新的分析神经元放电频率的方法,并通过交叉验证比较... 为了研究神经元放电的内在规律及解决传统线性分析方法不能对神经元采样数据进行有效分类的问题,提出了正则化线性判别分析法和最近收缩质心法。根据神经元数据自身的特点,设计了一个新的分析神经元放电频率的方法,并通过交叉验证比较了各算法的正确性。实验结果表明了提出的新方法的有效性,证明了神经元放电活动的内在规律性以及利用对神经元集群放电活动的分析对外界刺激分类和预测的可行性。 展开更多
关键词 最近质心收缩方法 正则化线性判别分析 神经电活动 集群放电 交叉验证
下载PDF
基于小波去噪和线性判别分析的人脸识别方法 被引量:2
2
作者 栗科峰 卢金燕 +1 位作者 黄明明 黄全振 《科技通报》 2018年第7期115-118,共4页
提出了将直方图均衡和小波去噪相结合的预处理方法,获得小波域中人脸图像的亮度不变描述;然后通过正则线性判别分析提取特征矩阵获取最佳投影方向;最后,通过计算特征向量之间的余弦距离从而实现有效分类。在扩展Yale-B人脸数据库上进行... 提出了将直方图均衡和小波去噪相结合的预处理方法,获得小波域中人脸图像的亮度不变描述;然后通过正则线性判别分析提取特征矩阵获取最佳投影方向;最后,通过计算特征向量之间的余弦距离从而实现有效分类。在扩展Yale-B人脸数据库上进行了光照变化和人脸关键部位被遮挡条件下的实验,实验结果验证了本文算法的有效性和鲁棒性。 展开更多
关键词 人脸识别 直方图均衡 小波去噪 正则线性判别分析
下载PDF
基于卡方核的正则化线性判别行人再识别算法 被引量:1
3
作者 雷大江 滕君 +1 位作者 王明达 吴渝 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期66-76,共11页
针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将... 针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。 展开更多
关键词 行人再识别 卡方核 正则化线性判别分析 核函数
下载PDF
基于集成学习的规范化LDA人脸识别 被引量:6
4
作者 张燕平 窦蓉蓉 +1 位作者 赵姝 曹振田 《计算机工程》 CAS CSCD 北大核心 2010年第14期144-146,共3页
针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高... 针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。 展开更多
关键词 人脸识别 规范化线性鉴别分析 集成学习
下载PDF
面向局部线性回归分类器的判别分析方法 被引量:2
5
作者 朱换荣 郑智超 孙怀江 《智能系统学报》 CSCD 北大核心 2019年第5期959-965,共7页
局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法... 局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。 展开更多
关键词 局部线性回归分类器 维数约简 正交投影 迹比问题 人脸识别 特征提取 判别分析 线性回归分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部