针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将...针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。展开更多
局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法...局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。展开更多
文摘针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。
文摘局部线性回归分类器(locality-regularized linear regression classification,LLRC)在人脸识别上表现出了高识别率以及高效性的特点,然而原始特征空间并不能保证LLRC的效率。为了提高LLRC的性能,提出了一种与LLRC相联系的新的降维方法,即面向局部线性回归分类器的判别分析方法(locality-regularized linear regressionclassification based discriminant analysis,LLRC-DA)。LLRC-DA根据LLRC的决策准则设计目标函数,通过最大化类间局部重构误差并最小化类内局部重构误差来寻找最优的特征子空间。此外,LLRC-DA通过对投影矩阵添加正交约束来消除冗余信息。为了有效地求解投影矩阵,利用优化变量之间的关系,提出了一种新的迹比优化算法。因此LLRC-DA非常适用于LLRC。在FERET和ORL人脸库上进行了实验,实验结果表明LLRCDA比现有方法更具有优越性。