Actual textile wastewater and synthesized wastewater containing various textile dyes were photocatalytic degraded by the UVH2O2Fs-TiO2 process in an aimular-flow photocatalytic reactor. In this process, a photon kinet...Actual textile wastewater and synthesized wastewater containing various textile dyes were photocatalytic degraded by the UVH2O2Fs-TiO2 process in an aimular-flow photocatalytic reactor. In this process, a photon kinetic-measure was adopted to obtain constant rates of dyes decomposition. It was theorized that, by illumination at different UV frequencies, the electrons within the semiconductor were excited from the valence band to the conduction band, yielding the formation of electron-hole pairs which are the pre-requisites for photocatalysis. CPT (critical photonic time) exposure required to cause 90% of vibrations between the double and single bonds along the molecular chain of the dyes to be oxidized, was taken to measure the photocatalytic activities. The CPTs varied with the frequencies of the UV spectral areas. The derivatization of CPT from the first-order kinetic law was presented.展开更多
基金Project supported by the Scientific Research Foundation Funded for the Returned Oversea Scholars, State Education Ministry of China(No. 2055-55).
文摘Actual textile wastewater and synthesized wastewater containing various textile dyes were photocatalytic degraded by the UVH2O2Fs-TiO2 process in an aimular-flow photocatalytic reactor. In this process, a photon kinetic-measure was adopted to obtain constant rates of dyes decomposition. It was theorized that, by illumination at different UV frequencies, the electrons within the semiconductor were excited from the valence band to the conduction band, yielding the formation of electron-hole pairs which are the pre-requisites for photocatalysis. CPT (critical photonic time) exposure required to cause 90% of vibrations between the double and single bonds along the molecular chain of the dyes to be oxidized, was taken to measure the photocatalytic activities. The CPTs varied with the frequencies of the UV spectral areas. The derivatization of CPT from the first-order kinetic law was presented.