Cross-validation method is used to choose the three smoothing parameters in nonlin ear wavelet regression estimators. The strong consistency and convergence rate of cross-vali dation nonlinear wavelet regression estim...Cross-validation method is used to choose the three smoothing parameters in nonlin ear wavelet regression estimators. The strong consistency and convergence rate of cross-vali dation nonlinear wavelet regression estimators are obtained.展开更多
This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme,...This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme, using a variable transformation of the auxiliary variable, x. All the six estimators proposed by [1] are easily identified as special cases of the proposed class of estimators. Asymptotic properties of the proposed class of estimators are derived theoretically and subsequently verified using empirical illustrations. Some of the proposed estimators are found to have relatively large gains in efficiency over the customary ratio estimator, ?for the given data set.展开更多
Extending the work carried out by [1], this paper proposes six combined-type estimators of population ratio of two variables in post-stratified sampling scheme, using variable transformation. Properties of the propose...Extending the work carried out by [1], this paper proposes six combined-type estimators of population ratio of two variables in post-stratified sampling scheme, using variable transformation. Properties of the proposed estimators were obtained up to first order approximations,(on–1), both for achieved sample configurations (conditional argument) and over repeated samples of fixed size n (unconditional argument). Efficiency conditions were obtained. Under these conditions the proposed combined-type estimators would perform better than the associated customary combined-type estimator. Furthermore, optimum estimators among the proposed combined-type estimators were obtained both under the conditional and unconditional arguments. An empirical work confirmed the theoretical results.展开更多
文摘Cross-validation method is used to choose the three smoothing parameters in nonlin ear wavelet regression estimators. The strong consistency and convergence rate of cross-vali dation nonlinear wavelet regression estimators are obtained.
文摘This paper is an extension and generalization of the study carried out by [1] on the estimation of the population ratio (R) of the population means of two variables (y and x) under Simple Random Sampling (SRS) scheme, using a variable transformation of the auxiliary variable, x. All the six estimators proposed by [1] are easily identified as special cases of the proposed class of estimators. Asymptotic properties of the proposed class of estimators are derived theoretically and subsequently verified using empirical illustrations. Some of the proposed estimators are found to have relatively large gains in efficiency over the customary ratio estimator, ?for the given data set.
文摘Extending the work carried out by [1], this paper proposes six combined-type estimators of population ratio of two variables in post-stratified sampling scheme, using variable transformation. Properties of the proposed estimators were obtained up to first order approximations,(on–1), both for achieved sample configurations (conditional argument) and over repeated samples of fixed size n (unconditional argument). Efficiency conditions were obtained. Under these conditions the proposed combined-type estimators would perform better than the associated customary combined-type estimator. Furthermore, optimum estimators among the proposed combined-type estimators were obtained both under the conditional and unconditional arguments. An empirical work confirmed the theoretical results.