Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applicatio...Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.展开更多
在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squ...在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squeeze)相结合的交通标志识别方法.首先,采用K-means对交通标志图像进行三角形、圆形图像二聚类,并利用制作的切割模板切割ROI并提取HOG特征;然后,利用卷积神经网络(Convolutional NeuralNetwork,CNN)对HOG特征进行过滤、降维,并通过Squeeze网络对过滤后的二次特征进行重要性标定;最后,训练该网络模型并实现对交通标志的识别.仿真结果表明,与BP网络、SVM及CNN对比,本文方法在保证训练时间的同时,识别精度达到98.58%.展开更多
目的建立一种通过阈值选取高光谱图感兴趣区域建立模型从而提高快速检测牛肉掺假猪肉水平的方法。方法以2%为间隔,掺假比例为2%~50%(w/w),配制掺入猪肉糜的掺假牛肉样本并采集高光谱反射数据,根据某波长处光谱数据频率曲线设定阈值提...目的建立一种通过阈值选取高光谱图感兴趣区域建立模型从而提高快速检测牛肉掺假猪肉水平的方法。方法以2%为间隔,掺假比例为2%~50%(w/w),配制掺入猪肉糜的掺假牛肉样本并采集高光谱反射数据,根据某波长处光谱数据频率曲线设定阈值提取高光谱感兴趣区域,同时以直径为150个像素的圆形区域提取光谱作为对比。采用浓度梯度法、Kennard-Stone法、光谱-理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)、极大线性无关法将样本划分为校正集和预测集,借助多元散射校正结合平滑预处理后采用偏最小二乘法建立掺假预测模型进行比较分析。结果通过设定阈值提取感兴趣区域建立的模型比圆形区域提取所建模型更加稳定、精准,其中SPXY法划分样本所建立的模型预测效果最好,校正相关系数r_c^2为0.9733,验证集相关系数r_p^2为0.9515。结论基于高光谱技术通过设定阈值提取特征光谱并结合化学计量学可提高预测牛肉掺假的能力。展开更多
文摘Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.
文摘在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squeeze)相结合的交通标志识别方法.首先,采用K-means对交通标志图像进行三角形、圆形图像二聚类,并利用制作的切割模板切割ROI并提取HOG特征;然后,利用卷积神经网络(Convolutional NeuralNetwork,CNN)对HOG特征进行过滤、降维,并通过Squeeze网络对过滤后的二次特征进行重要性标定;最后,训练该网络模型并实现对交通标志的识别.仿真结果表明,与BP网络、SVM及CNN对比,本文方法在保证训练时间的同时,识别精度达到98.58%.
文摘目的建立一种通过阈值选取高光谱图感兴趣区域建立模型从而提高快速检测牛肉掺假猪肉水平的方法。方法以2%为间隔,掺假比例为2%~50%(w/w),配制掺入猪肉糜的掺假牛肉样本并采集高光谱反射数据,根据某波长处光谱数据频率曲线设定阈值提取高光谱感兴趣区域,同时以直径为150个像素的圆形区域提取光谱作为对比。采用浓度梯度法、Kennard-Stone法、光谱-理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)、极大线性无关法将样本划分为校正集和预测集,借助多元散射校正结合平滑预处理后采用偏最小二乘法建立掺假预测模型进行比较分析。结果通过设定阈值提取感兴趣区域建立的模型比圆形区域提取所建模型更加稳定、精准,其中SPXY法划分样本所建立的模型预测效果最好,校正相关系数r_c^2为0.9733,验证集相关系数r_p^2为0.9515。结论基于高光谱技术通过设定阈值提取特征光谱并结合化学计量学可提高预测牛肉掺假的能力。