This paper summarizes recent studies on the effects of urbanization on climate in China. The effects of urbanization on local climate trends have been re-estimated based on homogenized observations and using improved ...This paper summarizes recent studies on the effects of urbanization on climate in China. The effects of urbanization on local climate trends have been re-estimated based on homogenized observations and using improved methods. In this respect, the effect of urbanization on the observed warming trend of local surface air temperatures during the last few decades is determined as being about 20% at urban stations such as the Beijing Observatory. The large-scale weakening trend of wind speed is also about 20% more prominent at the city center than its surroundings. The effect of urbanization on precipitation is not profound, but results of high-resolution regional climate modeling suggest that this effect may depend on the urban extent. Although the urban heat island(UHI) should favor local atmospheric convection and hence precipitation, the increasingly extending urban land-use may reduce precipitation over the urban cluster in North China. It is found that urbanization can play a more notable role in extreme events than usual weather. High-resolution simulations show a positive feedback between the UHI and the super-heat wave in Shanghai during Julye August 2013. Relevant studies dealing with urban climate adaptation are discussed in relation to recent ?ndings.展开更多
Climate extremes, such as extreme hot temperatures and heat waves, can have dramatic societal, economic, and ecological consequences. China has experienced remarkable interannual and decadal changes in hot extremes du...Climate extremes, such as extreme hot temperatures and heat waves, can have dramatic societal, economic, and ecological consequences. China has experienced remarkable interannual and decadal changes in hot extremes during the last several decades. However, the underlying mechanisms responsible for changes in the hot extremes over China have not been clearly identified. In this study, we investigate the role of land-atmosphere coupling for hot days and heat waves during summer over China using two long-term Weather Research and Forecasting model simulations with and without interactive soil moisture. Results indicate that land-atmosphere coupling mainly amplifies hot extremes over China. In particular, significant amplifying effects appear over most of eastern and southwestern China. Over these areas, land-atmosphere coupling generally accounts for 30%-70% of the numbers of hot days and heat waves. This study highlights the critical importance of land-atmosphere interactions for the occurrence of hot extremes over China.展开更多
Droughts and floods are the two most costly climate disasters over China.However,our ability to predict droughts and floods is limited by poor understanding of the atmospheric response to long memory climate drivers s...Droughts and floods are the two most costly climate disasters over China.However,our ability to predict droughts and floods is limited by poor understanding of the atmospheric response to long memory climate drivers such as sea surface temperature and soil moisture.In this study,we investigate soil moisture feedbacks on summer droughts and floods over eastern China for the1998 and 1999 cases using the Weather Research and Forecasting(WRF)model simulations.Soil moisture climatology,derived from a 20-year-long control run,is used to replace soil moisture evolution in uncoupled simulations for 1998 and 1999 summers.Eastern China experienced severe floods during the summer of 1998,while 1999 summer is characterized by a"southern flood and northern drought"pattern.The WRF model generally simulates relatively well the droughts and floods in the two summers.It is found that land-atmosphere coupling contributes substantially to both droughts and floods over northern China while it plays a relatively small role in precipitation anomalies over southern China.Our findings suggest that soil moisture memory help contribute skill to seasonal prediction of droughts and floods over northern China.展开更多
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ...Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.展开更多
The excessively torrential rainfall over the Yangtze-Huaihe valley during the summer of 1991 is simulated with an updated version of the second generation NCAR regional climate model (RegCM2) as a case study to evalua...The excessively torrential rainfall over the Yangtze-Huaihe valley during the summer of 1991 is simulated with an updated version of the second generation NCAR regional climate model (RegCM2) as a case study to evaluate the model's performance in reproducing the daily precipitation and the associated physical factors contributing to the generation of the anomalous rainfall. This simulation is driven by large-scale atmospheric lateral boundary conditions derived from the European Center for Medium Range Weather Forecast (ECMWF) analysis. The simulation period is May to August 1991. The model domain covers East Asia and its adjacent oceanic regions, The model resolution is 60 km x 60 km in the horizontal and 23 layers in the vertical. The model can reasonably reproduce the daily precipitation events over East Asia for the summer of 1991, especially in the Yangtze-Huaihe valley where the anomalous rainfall occurred. The spatial and temporal structure of some important physical variables and processes related to the generation of the anomalous rainfall are analyzed, The time evolution of simulated upward vertical motion and horizontal convergence agrees with the five rainfall episodes over this subregion. The water vapor feeding the rainfall is mostly transported by the horizontal atmospheric motions from outside of the region rather than from local sources. The subtropical high over the western Pacific Ocean controls the progress and retreat of the summer monsoon over East Asia, and the RegCM2 can simulate the northward migration and southward retreat of subtropical high over the western Pacific Ocean. Furthermore, the model can represent the daily variation of the low level jet, which is crucial in the water vapor transport to the Yangtze-Huaihe valley.展开更多
The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greeni...The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.展开更多
We investigated the performance of 12 different physics configurations of the climate version of the Weather, Research and Forecasting (WRF) Model over the Middle East and North Africa (MENA) domain. Possible combinat...We investigated the performance of 12 different physics configurations of the climate version of the Weather, Research and Forecasting (WRF) Model over the Middle East and North Africa (MENA) domain. Possible combinations among two Planetary Boundary Layer (PBL), three Cumulus (CUM) and two Microphysics (MIC) schemes were tested. The 2-year simulations (December 1988-November 1990) have been compared with gridded observational data and station measurements for several variables, including total precipitation and maximum and minimum 2-meter air temperature. An objective ranking method of the 12 different simulations and the selection procedure of the best performing configuration for the MENA domain are based on several statistical metrics and carried out for relevant sub-domains and individual stations. The setup for cloud microphysics is found to have the strongest impact on temperature biases while precipitation is most sensitive to the cumulus parameterization scheme and mainly in the tropics.展开更多
Due to the close relationship between regional climate anomalies and social-economy and society development,climatologists worldwide paid great attention to the regional climate anomalies over a long period of time an...Due to the close relationship between regional climate anomalies and social-economy and society development,climatologists worldwide paid great attention to the regional climate anomalies over a long period of time and the corresponding investigation of regional climate modeling has made great progresses.Since 1990 the regional climate simulations have made a more substantial achievement.This paper will focus on the reliability and uncertainties of regional climate modeling by global climate models,the advances on regional climate modeling in the world and the outlook of regional climate modeling.展开更多
The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with ...The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4^2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4^2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4^2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.展开更多
Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter...Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.展开更多
基金supported by the Chinese Academy of Sciences (XDA05090000)the National Natural Science Foundation (41475078)
文摘This paper summarizes recent studies on the effects of urbanization on climate in China. The effects of urbanization on local climate trends have been re-estimated based on homogenized observations and using improved methods. In this respect, the effect of urbanization on the observed warming trend of local surface air temperatures during the last few decades is determined as being about 20% at urban stations such as the Beijing Observatory. The large-scale weakening trend of wind speed is also about 20% more prominent at the city center than its surroundings. The effect of urbanization on precipitation is not profound, but results of high-resolution regional climate modeling suggest that this effect may depend on the urban extent. Although the urban heat island(UHI) should favor local atmospheric convection and hence precipitation, the increasingly extending urban land-use may reduce precipitation over the urban cluster in North China. It is found that urbanization can play a more notable role in extreme events than usual weather. High-resolution simulations show a positive feedback between the UHI and the super-heat wave in Shanghai during Julye August 2013. Relevant studies dealing with urban climate adaptation are discussed in relation to recent ?ndings.
基金supported by the Hundred Talents Program of the Chinese Academy of Sciencesa fund for the President's Prize of the Chinese Academy of Sciencesthe National Basic Research Program of China (2009CB421405)
文摘Climate extremes, such as extreme hot temperatures and heat waves, can have dramatic societal, economic, and ecological consequences. China has experienced remarkable interannual and decadal changes in hot extremes during the last several decades. However, the underlying mechanisms responsible for changes in the hot extremes over China have not been clearly identified. In this study, we investigate the role of land-atmosphere coupling for hot days and heat waves during summer over China using two long-term Weather Research and Forecasting model simulations with and without interactive soil moisture. Results indicate that land-atmosphere coupling mainly amplifies hot extremes over China. In particular, significant amplifying effects appear over most of eastern and southwestern China. Over these areas, land-atmosphere coupling generally accounts for 30%-70% of the numbers of hot days and heat waves. This study highlights the critical importance of land-atmosphere interactions for the occurrence of hot extremes over China.
基金supported by the National Natural Science Foundation of China (41275089)the National Basic Research Program of China (2009CB421405 and 2012CB955604)the Hundred Talent Program of the Chinese Academy of Sciences
文摘Droughts and floods are the two most costly climate disasters over China.However,our ability to predict droughts and floods is limited by poor understanding of the atmospheric response to long memory climate drivers such as sea surface temperature and soil moisture.In this study,we investigate soil moisture feedbacks on summer droughts and floods over eastern China for the1998 and 1999 cases using the Weather Research and Forecasting(WRF)model simulations.Soil moisture climatology,derived from a 20-year-long control run,is used to replace soil moisture evolution in uncoupled simulations for 1998 and 1999 summers.Eastern China experienced severe floods during the summer of 1998,while 1999 summer is characterized by a"southern flood and northern drought"pattern.The WRF model generally simulates relatively well the droughts and floods in the two summers.It is found that land-atmosphere coupling contributes substantially to both droughts and floods over northern China while it plays a relatively small role in precipitation anomalies over southern China.Our findings suggest that soil moisture memory help contribute skill to seasonal prediction of droughts and floods over northern China.
文摘Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.
基金National Key Programme for Developing Basic Sciences(Gl998040900 Part 1), the USA/ DOE-PRC/ CMA Joint Research on Regional Cli
文摘The excessively torrential rainfall over the Yangtze-Huaihe valley during the summer of 1991 is simulated with an updated version of the second generation NCAR regional climate model (RegCM2) as a case study to evaluate the model's performance in reproducing the daily precipitation and the associated physical factors contributing to the generation of the anomalous rainfall. This simulation is driven by large-scale atmospheric lateral boundary conditions derived from the European Center for Medium Range Weather Forecast (ECMWF) analysis. The simulation period is May to August 1991. The model domain covers East Asia and its adjacent oceanic regions, The model resolution is 60 km x 60 km in the horizontal and 23 layers in the vertical. The model can reasonably reproduce the daily precipitation events over East Asia for the summer of 1991, especially in the Yangtze-Huaihe valley where the anomalous rainfall occurred. The spatial and temporal structure of some important physical variables and processes related to the generation of the anomalous rainfall are analyzed, The time evolution of simulated upward vertical motion and horizontal convergence agrees with the five rainfall episodes over this subregion. The water vapor feeding the rainfall is mostly transported by the horizontal atmospheric motions from outside of the region rather than from local sources. The subtropical high over the western Pacific Ocean controls the progress and retreat of the summer monsoon over East Asia, and the RegCM2 can simulate the northward migration and southward retreat of subtropical high over the western Pacific Ocean. Furthermore, the model can represent the daily variation of the low level jet, which is crucial in the water vapor transport to the Yangtze-Huaihe valley.
基金This study was supported bythe National Key Basic Research Development Programgranted by the Ministry of Science and Technology ofChina (MSTC) with project number G1999043500. Itwas also partly supported by the Innovation Program ofthe Chinese
文摘The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.
文摘We investigated the performance of 12 different physics configurations of the climate version of the Weather, Research and Forecasting (WRF) Model over the Middle East and North Africa (MENA) domain. Possible combinations among two Planetary Boundary Layer (PBL), three Cumulus (CUM) and two Microphysics (MIC) schemes were tested. The 2-year simulations (December 1988-November 1990) have been compared with gridded observational data and station measurements for several variables, including total precipitation and maximum and minimum 2-meter air temperature. An objective ranking method of the 12 different simulations and the selection procedure of the best performing configuration for the MENA domain are based on several statistical metrics and carried out for relevant sub-domains and individual stations. The setup for cloud microphysics is found to have the strongest impact on temperature biases while precipitation is most sensitive to the cumulus parameterization scheme and mainly in the tropics.
文摘Due to the close relationship between regional climate anomalies and social-economy and society development,climatologists worldwide paid great attention to the regional climate anomalies over a long period of time and the corresponding investigation of regional climate modeling has made great progresses.Since 1990 the regional climate simulations have made a more substantial achievement.This paper will focus on the reliability and uncertainties of regional climate modeling by global climate models,the advances on regional climate modeling in the world and the outlook of regional climate modeling.
基金funds from the U. S. Na- tional Aeronautics and Space Administration under Grant NNG04GB89G the U. S. National Science Foundation under grant ATM-0129495
文摘The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4^2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4^2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4^2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.
基金supported by the SFB/TR172 “Arctic Amplification:Climate Relevant Atmospheric and Surface Processes,and Feedback Mechanisms (AC)” funded by the Deutsche Forschungsgemeinschaft (DFG)supported by the project QUARCCS “Quantifying Rapid Climate Change in the Arctic:Regional feedbacks and large-scale impacts” funded by the German Federal Ministry for Education and Research (BMBF)
文摘Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.