Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetati...Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetation dynamics were analyzed. Once sand barrier and artificial vegetation have stabilized the surface of the sifting sand, could form aeolian deposition crust and then evolve into algae_dominated crust. Such processes result from the interactions of physical effects of atmospheric dust and silt deposition on sand surface, sinking and raindrop impact, and soil microorganism activities. Under the condition of less than 200 mm precipitation, the presence of microbiotic crust changes the soil hydraulic conductivity, alters the temporal and spatial distribution of the limited precipitation in sand layer and leads to the decline of deep_rooted shrubs. The development of microbiotic crust and subsurface soil affects the plant growth and seed rain distribution, as a result, the diversity of plant species gradually tend to become saturated and finally affects the vegetation stability.展开更多
Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into ...Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu'er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (II1) and the middle Yunnan sub-block (II2), while the Baoshan- Pu'er block (III) can be further divided into three sub-blocks: Baoshan sub-block (III1), Jinggu sub-block (III2), and Mengla sub-block (III3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, rotating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (II1), and middle Yunnan sub-block (II2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4(/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu'er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or 展开更多
文摘Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetation dynamics were analyzed. Once sand barrier and artificial vegetation have stabilized the surface of the sifting sand, could form aeolian deposition crust and then evolve into algae_dominated crust. Such processes result from the interactions of physical effects of atmospheric dust and silt deposition on sand surface, sinking and raindrop impact, and soil microorganism activities. Under the condition of less than 200 mm precipitation, the presence of microbiotic crust changes the soil hydraulic conductivity, alters the temporal and spatial distribution of the limited precipitation in sand layer and leads to the decline of deep_rooted shrubs. The development of microbiotic crust and subsurface soil affects the plant growth and seed rain distribution, as a result, the diversity of plant species gradually tend to become saturated and finally affects the vegetation stability.
文摘Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu'er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (II1) and the middle Yunnan sub-block (II2), while the Baoshan- Pu'er block (III) can be further divided into three sub-blocks: Baoshan sub-block (III1), Jinggu sub-block (III2), and Mengla sub-block (III3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, rotating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (II1), and middle Yunnan sub-block (II2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4(/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu'er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or