In this paper,a novel NH_(3)/CO_(2)ejector-cascade refrigeration system with regenerator is proposed,which can recycle the waste heat at the outlet of the compressor.After establishing the mathematical model of the sy...In this paper,a novel NH_(3)/CO_(2)ejector-cascade refrigeration system with regenerator is proposed,which can recycle the waste heat at the outlet of the compressor.After establishing the mathematical model of the system,the theoretical energy and exergy analysis are carried out and compared with the conventional cascade refrigeration system.It is concluded that compared with the conventional cascade refrigeration system,the novel ejector-cascade refrigeration system with regenerator has the advantages of less power consumption of the compressor,less component exergy destruction,high system performance,and is more suitable for working at a lower temperature.Under the working conditions studied in this paper,compared with the conventional cascade refrigeration system,the COP of the novel ejector-cascade refrigeration system with regenerator is increased by9.58%;the exergy efficiency is increased by 9.50%,and the optimal evaporation temperature is about-45℃.展开更多
An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experi...An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experiment was carried out to quantify the network. A method called least square is employed in order to identify the H matrix describing the system. The results obtained here show that the active thermo-acoustic network can reliably depict the characteristics of a thermo-acoustic system.展开更多
基金supported by National Natural Science Foundation of China(No.51976095)the Taishan Scholar Program of Shandong(No.tsqn201812073)。
文摘In this paper,a novel NH_(3)/CO_(2)ejector-cascade refrigeration system with regenerator is proposed,which can recycle the waste heat at the outlet of the compressor.After establishing the mathematical model of the system,the theoretical energy and exergy analysis are carried out and compared with the conventional cascade refrigeration system.It is concluded that compared with the conventional cascade refrigeration system,the novel ejector-cascade refrigeration system with regenerator has the advantages of less power consumption of the compressor,less component exergy destruction,high system performance,and is more suitable for working at a lower temperature.Under the working conditions studied in this paper,compared with the conventional cascade refrigeration system,the COP of the novel ejector-cascade refrigeration system with regenerator is increased by9.58%;the exergy efficiency is increased by 9.50%,and the optimal evaporation temperature is about-45℃.
文摘An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experiment was carried out to quantify the network. A method called least square is employed in order to identify the H matrix describing the system. The results obtained here show that the active thermo-acoustic network can reliably depict the characteristics of a thermo-acoustic system.