The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance th...The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.展开更多
This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)systems.Due to the presence of an eavesdropper(Eve),the system’s com-mu...This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)systems.Due to the presence of an eavesdropper(Eve),the system’s com-munication links may be insecure.This paper proposes deploying an intelligent reflecting surface(IRS)on the UAV to enhance the communication performance of mobile vehicles,improve system flexibility,and alleviate eavesdropping on communication links.The links for uploading task data from vehicles to a base station(BS)are protected by IRS-assisted physical layer security(PLS).Upon receiving task data,the computing resources provided by the edge computing servers(MEC)are allocated to vehicles for task execution.Existing blockchain-based computation offloading schemes typically focus on improving network performance,such as minimizing energy consumption or latency,while neglecting the Gas fees for computation offloading and the costs required for MEC computation,leading to an imbalance between service fees and resource allocation.This paper uses a utility-oriented computation offloading scheme to balance costs and resources.This paper proposes alternating phase optimization and power optimization to optimize the energy consumption,latency,and communication secrecy rate,thereby maximizing the weighted total utility of the system.Simulation results demonstrate a notable enhancement in the weighted total system utility and resource utilization,thereby corroborating the viability of our approach for practical applications.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62271099。
文摘The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.
基金supported in part by the National Key R&D Program of China under Grant 2022YFB3104503in part by the China Postdoctoral Science Foundation under Grant 2024M750199+1 种基金in part by the National Natural Science Foundation of China under Grant 62202054,Grant 62002022 and Grant 62472251in part by the Fundamental Research Funds for the Central Universities under Grant BLX202360.
文摘This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)systems.Due to the presence of an eavesdropper(Eve),the system’s com-munication links may be insecure.This paper proposes deploying an intelligent reflecting surface(IRS)on the UAV to enhance the communication performance of mobile vehicles,improve system flexibility,and alleviate eavesdropping on communication links.The links for uploading task data from vehicles to a base station(BS)are protected by IRS-assisted physical layer security(PLS).Upon receiving task data,the computing resources provided by the edge computing servers(MEC)are allocated to vehicles for task execution.Existing blockchain-based computation offloading schemes typically focus on improving network performance,such as minimizing energy consumption or latency,while neglecting the Gas fees for computation offloading and the costs required for MEC computation,leading to an imbalance between service fees and resource allocation.This paper uses a utility-oriented computation offloading scheme to balance costs and resources.This paper proposes alternating phase optimization and power optimization to optimize the energy consumption,latency,and communication secrecy rate,thereby maximizing the weighted total utility of the system.Simulation results demonstrate a notable enhancement in the weighted total system utility and resource utilization,thereby corroborating the viability of our approach for practical applications.