A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An op...A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An optimal extended ANFIS model combined with the wave reflection coefficient analysis for the estimation of the structure dimensions is established. In the premise of lower wave reflection coefficient, the specific sizes of the structure are obtained inversely, and the contribution of each related parameter on the structural reflection performance is analyzed. The main influencing factors are determined. It is found that the optimal dimensions of the proposed structure exist, which make the wave absorbing performance of the structure reach a perfect status under a wide wave frequency band.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51279028)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201405025-1)
文摘A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An optimal extended ANFIS model combined with the wave reflection coefficient analysis for the estimation of the structure dimensions is established. In the premise of lower wave reflection coefficient, the specific sizes of the structure are obtained inversely, and the contribution of each related parameter on the structural reflection performance is analyzed. The main influencing factors are determined. It is found that the optimal dimensions of the proposed structure exist, which make the wave absorbing performance of the structure reach a perfect status under a wide wave frequency band.