Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave...Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.展开更多
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored...Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.展开更多
A precise modeling method of visible characteristics of the space-based target was presented based on bidirectional reflection distribution function (BRDF). The background characteristics of the space-based target wer...A precise modeling method of visible characteristics of the space-based target was presented based on bidirectional reflection distribution function (BRDF). The background characteristics of the space-based target were represented to build models of direct solar radiation and reflected radiation of the Earth based on blackbody radiation theory. The geometry characteristics of the target were analyzed to establish a surface equation of each surface based on its body coordinate system. The material characteristics of the target surface were described by introducing a BRDF model which considers the character of surface Gauss statistics and self-shadow and is obtained by measurement and modeling in advance. The relative positions of the space-based target, the background radiation sources and the observation platform were determined based on coordinate con- version to judge contributing surface of the target to observation system. Then a mathematical model on visible characteristics of the space target for the given optical system was built by summing reflection components of all the surfaces. Simulation of visible characteristics of the space-based target in orbit was achieved according to its given geometrical dimensions, physical parameters and orbital parameters. The results show that the method is effective for analysis on visible characteristics of the space-based target when single reflection is considered and its surface is regularly described in a surface equation, which provides a way to real-time calculation of visible characteristics of the space-based target.展开更多
基金supported by National Key R&D Program of China(No.2018YFA0702502)NSFC(Grant No.41974142)Science Foundation of China University of petroleum,Beijing(No.2462019YJRC005).
文摘Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.
基金supported by the National Natural Science Foundation of China[grant number 51991393]support from the Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology and Key Laboratory of Earthquake Resistance,Earthquake Mitigation,and Structural Safety funded by the Ministry of Education。
文摘Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.
基金supported by the National High-Tech Research and Development Program of China ("863" Program) (Grant No. 2006AA704214)
文摘A precise modeling method of visible characteristics of the space-based target was presented based on bidirectional reflection distribution function (BRDF). The background characteristics of the space-based target were represented to build models of direct solar radiation and reflected radiation of the Earth based on blackbody radiation theory. The geometry characteristics of the target were analyzed to establish a surface equation of each surface based on its body coordinate system. The material characteristics of the target surface were described by introducing a BRDF model which considers the character of surface Gauss statistics and self-shadow and is obtained by measurement and modeling in advance. The relative positions of the space-based target, the background radiation sources and the observation platform were determined based on coordinate con- version to judge contributing surface of the target to observation system. Then a mathematical model on visible characteristics of the space target for the given optical system was built by summing reflection components of all the surfaces. Simulation of visible characteristics of the space-based target in orbit was achieved according to its given geometrical dimensions, physical parameters and orbital parameters. The results show that the method is effective for analysis on visible characteristics of the space-based target when single reflection is considered and its surface is regularly described in a surface equation, which provides a way to real-time calculation of visible characteristics of the space-based target.