A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeaste...A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem- perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem- perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv- ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu- midity and sunshine hours was also found, which was similar to the distribution of the three climate variables.展开更多
As a main component in water balance,evapotranspiration(ET)is of great importance for water saving,especially in arid and semi-arid areas.In this study,the FAO(Food and Agriculture Organization)Penman-Monteith model w...As a main component in water balance,evapotranspiration(ET)is of great importance for water saving,especially in arid and semi-arid areas.In this study,the FAO(Food and Agriculture Organization)Penman-Monteith model was used to estimate the magnitude and temporal dynamics of reference evapotranspiration(ET0)in 2014 in subalpine meadows of the Qilian Mountains,Northwest China.Meanwhile,actual ET(ETc)was also investigated by the eddy covariance(EC)system.Results indicated that ETc estimated by the EC System was 583 mm,lower than ET0(923 mm)estimated by the FAO Penman-Monteith model in 2014.Moreover,ET0 began to increase in March and reached the peak value in August and then declined in September,however,ETc began to increase from April and reached the peak value in July,and then declined in August.Total ETc and ET0 values during the growing season(from May to September)were 441 and 666 mm,respectively,which accounted for 75.73%of annual cumulative ETc and 72.34%of annual cumulative ET0,respectively.A crop coefficient(kc)was also estimated for calculating the ETc,and average value of kc during the growing season was 0.81(ranging from 0.45 to 1.16).Air temperature(Ta),wind speed(u),net radiation(Rn)and soil temperature(Ts)at the depth of 5 cm and aboveground biomass were critical factors for affecting kc,furthermore,a daily empirical kc equation including these main driving factors was developed.Our result demonstrated that the ETc value estimated by the data of kc and ET0 was validated and consistent with the growing season data in 2015 and 2016.展开更多
Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling w...Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water.展开更多
Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction,but the lack of ground-surveyed training samples is the main challenge for crop type identification.Al...Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction,but the lack of ground-surveyed training samples is the main challenge for crop type identification.Although reference time series based method(RBM)has been proposed to identify crop types without the use of ground-surveyed training samples,the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution.As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series,we improved the RBM by generating reference normalized difference vegetation index(NDVI)/enhanced vegetation index(EVI)time series at 30-m resolution(30-m RBM)using both Landsat and Sentinel-2 data,then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season.As a test case,we tried to use the 30-m RBM to identify major crop types in Hengshui,China at early season of 2018,the results showed that when the time series of the entire growing season were used for classification,overall classification accuracies of the 30-m RBM were higher than 95%,which were similar to the accuracies acquired using the ground-surveyed training samples.In addition,cotton,spring maize and summer maize distribution could be accurately generated 8,6 and 8 weeks before their harvest using the 30-m RBM;but winter wheat can only be accurately identified around the harvest time phase.Finally,NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases.Comparing with the previous RBM,advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop casification;while,samples collected from multiple years should be futher used so that the reference time series could co展开更多
Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water de...Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.展开更多
Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspir...Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspiration(ETc)model can optimize crop water use.The greenhouse microclimate environment has nearly zero wind speed and low radiation,hence low transpiration due to high temperature and humidity.Therefore,matching the greenhouse microclimate with the appropriate ETc model will certainly optimize crop water use efficiency since water is becoming a scarce resource globally,more so in the greenhouse environment.This is one of the main reasons why the gap between the dissemination of various advanced ETc models and the application by the greenhouse crop producers’community needs to be bridged.The likelihood or chances of rapidly disseminating and adopting advances in ETc estimating technology by a larger greenhouse crop producers community will increase if greenhouse ETc models become more user-friendly and available.The contribution of the greenhouse system to increased and sustainable food production must come through improved disseminating,adopting and use of existing greenhouse ETc models.FAO recommends a standard approach for the determination of crop water requirements utilizing the product of reference evapotranspiration(ET0)and crop coefficient(Kc)values.The FAO approach can also be used in greenhouse cultivation systems.However,studies connecting greenhouse technologies and methodologies for measuring ET0 or ETc in greenhouses are not available.There are also few studies undertaken that compared the performance of ET0 or ETc models under different categories of greenhouse conditions.In this review,a link between greenhouse technology and ET0 model or ETc model,and how existing knowledge and methodologies in ET0 or ETc measurements can actually enhance the sustainability of greenhouse farming have been highlighted.The categories of greenhouses,equipment commonly used,and the data collected for ET0 a展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40571029)
文摘A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem- perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem- perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv- ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu- midity and sunshine hours was also found, which was similar to the distribution of the three climate variables.
基金supported by the National Natural Science Foundation of China (41571051, 91425301)
文摘As a main component in water balance,evapotranspiration(ET)is of great importance for water saving,especially in arid and semi-arid areas.In this study,the FAO(Food and Agriculture Organization)Penman-Monteith model was used to estimate the magnitude and temporal dynamics of reference evapotranspiration(ET0)in 2014 in subalpine meadows of the Qilian Mountains,Northwest China.Meanwhile,actual ET(ETc)was also investigated by the eddy covariance(EC)system.Results indicated that ETc estimated by the EC System was 583 mm,lower than ET0(923 mm)estimated by the FAO Penman-Monteith model in 2014.Moreover,ET0 began to increase in March and reached the peak value in August and then declined in September,however,ETc began to increase from April and reached the peak value in July,and then declined in August.Total ETc and ET0 values during the growing season(from May to September)were 441 and 666 mm,respectively,which accounted for 75.73%of annual cumulative ETc and 72.34%of annual cumulative ET0,respectively.A crop coefficient(kc)was also estimated for calculating the ETc,and average value of kc during the growing season was 0.81(ranging from 0.45 to 1.16).Air temperature(Ta),wind speed(u),net radiation(Rn)and soil temperature(Ts)at the depth of 5 cm and aboveground biomass were critical factors for affecting kc,furthermore,a daily empirical kc equation including these main driving factors was developed.Our result demonstrated that the ETc value estimated by the data of kc and ET0 was validated and consistent with the growing season data in 2015 and 2016.
文摘Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water.
基金The study was supported by the China National Key S&T Project of High Resolution Earth Observation System(30-Y20A07-9003-17/18)the National Natural Science Foundation of China(41801359).
文摘Early-season crop type mapping could provide important information for crop growth monitoring and yield prediction,but the lack of ground-surveyed training samples is the main challenge for crop type identification.Although reference time series based method(RBM)has been proposed to identify crop types without the use of ground-surveyed training samples,the methods are not suitable for study regions with small field size because the reference time series are mainly generated using data set with low spatial resolution.As the combination of Landsat data and Sentinel-2 data could increase the temporal resolution of 30-m image time series,we improved the RBM by generating reference normalized difference vegetation index(NDVI)/enhanced vegetation index(EVI)time series at 30-m resolution(30-m RBM)using both Landsat and Sentinel-2 data,then tried to estimate the potential of the reference NDVI/EVI time series for crop identification at early season.As a test case,we tried to use the 30-m RBM to identify major crop types in Hengshui,China at early season of 2018,the results showed that when the time series of the entire growing season were used for classification,overall classification accuracies of the 30-m RBM were higher than 95%,which were similar to the accuracies acquired using the ground-surveyed training samples.In addition,cotton,spring maize and summer maize distribution could be accurately generated 8,6 and 8 weeks before their harvest using the 30-m RBM;but winter wheat can only be accurately identified around the harvest time phase.Finally,NDVI outperformed EVI for crop type classification as NDVI had better separability for distinguishing crops at the green-up time phases.Comparing with the previous RBM,advantage of 30-m RBM is that the method could use the samples of the small fields to generate reference time series and process image time series with missing value for early-season crop casification;while,samples collected from multiple years should be futher used so that the reference time series could co
文摘Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.
基金supported by the Natural Science Foundation of China(Grant No.4186086351509107+6 种基金51609103)the National Key Research and Development Program of China(Grant No.2021YFC32011002017YFA0605002)the Beltand Road Special Foundation of the State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering(Grant No.2020nkzd01)the Postdoctoral Research of Jiangsu Province(Grant No.Bs510001)the Open Fund of High tech Key Laboratory of Agricultural Equipment and Intelligentization of Jiangsu Province(Grant No.JNZ201917)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspiration(ETc)model can optimize crop water use.The greenhouse microclimate environment has nearly zero wind speed and low radiation,hence low transpiration due to high temperature and humidity.Therefore,matching the greenhouse microclimate with the appropriate ETc model will certainly optimize crop water use efficiency since water is becoming a scarce resource globally,more so in the greenhouse environment.This is one of the main reasons why the gap between the dissemination of various advanced ETc models and the application by the greenhouse crop producers’community needs to be bridged.The likelihood or chances of rapidly disseminating and adopting advances in ETc estimating technology by a larger greenhouse crop producers community will increase if greenhouse ETc models become more user-friendly and available.The contribution of the greenhouse system to increased and sustainable food production must come through improved disseminating,adopting and use of existing greenhouse ETc models.FAO recommends a standard approach for the determination of crop water requirements utilizing the product of reference evapotranspiration(ET0)and crop coefficient(Kc)values.The FAO approach can also be used in greenhouse cultivation systems.However,studies connecting greenhouse technologies and methodologies for measuring ET0 or ETc in greenhouses are not available.There are also few studies undertaken that compared the performance of ET0 or ETc models under different categories of greenhouse conditions.In this review,a link between greenhouse technology and ET0 model or ETc model,and how existing knowledge and methodologies in ET0 or ETc measurements can actually enhance the sustainability of greenhouse farming have been highlighted.The categories of greenhouses,equipment commonly used,and the data collected for ET0 a