This paper studied the recycling process of cotton fibers in indigo denim fabrics.X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy were used to characterize the crystal morphology,the grain size ...This paper studied the recycling process of cotton fibers in indigo denim fabrics.X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy were used to characterize the crystal morphology,the grain size and the chemical composition of cotton fibers after alkali treatment.The mechanical property test and the bulk length test were done.The results show that the main functional group of the obtained regenerated cotton still exists,but the absorption peak of the bound alkali appears at the wavenumber of 3701 cm-1,and the crystallinity shows a downward trend.The K/S value increases first and then decreases,and the mechanical properties and the length of the body have a certain degree of damage.展开更多
Reduced graphene oxide(RGO)membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide(GO)membranes,as they have fewer oxygen-containing function...Reduced graphene oxide(RGO)membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide(GO)membranes,as they have fewer oxygen-containing functional groups and more non-oxidized regions.However,the weak hydrophilicity of RGO membranes inhibits water entry into their channels,resulting in their low water permeability.In this work,we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance.The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m^(2)·h·bar),approximately 16.8 times that of the RGO membrane(3.7 L/(m^(2)·h·bar)).Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGOMXene channels.Benefiting from good conductivity,the RGO-MXene membrane with electroassistance exhibits significantly increased rejection rates for negatively charged dyes(from 56.0%at 0 V to 91.4%at 2.0 V for Orange G)without decreasing the permeate flux,which could be attributed to enhanced electrostatic repulsion under electro-assistance.展开更多
In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was su...In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).展开更多
A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan...A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.展开更多
In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnet...In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnetron sputtering technique was applied to incorporate titanium dioxide(TiO) dopants into reduced graphene oxide(rGO) nanosheet for improving the power conversion efficiency(PCE) of DSSCs device. An optimum TiOcontent incorporated onto rGO nanosheet plays an important role in improving the PCE of DSSCs by minimising the recombination losses of photo-induced charge carriers.Based on the results obtained, 40-s sputtering duration for incorporating TiOdopants onto rGO nanosheet exhibits a maximum PCE of 8.78% than that of pure rGO film(0.68%). In fact, the presence of optimum content of TiOdopants within rGO nanosheet could act as mediators for efficient separation photo-induced charge carriers. However, the excessive of sputtering duration(e.g. 60 s) of TiOdopants onto rGO nanosheet results higher charge recombination and lowers the PCE of DSSCs(5.39%).展开更多
Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (D...Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-ROO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41 % higher than those of pure ZnS and ROO CEs, respectively. The ZnS-ROO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.展开更多
We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized sola...We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized solar cells(DSSCs). The photo-conversion efficiency of DSSCs was significantly enhanced after the addition of rGO, and in addition, the photo-anode showed decreased internal resistance. Analysis of rGO@TiO2 hybrids by transmissions scanning electron microscopy(TEM), X-ray diffraction(XRD), Raman spectra, N2 adsorption and desorption, atomic force microscopy(AFM) and X-ray photoelectron speetroscopy(XPS) demonstrates that the rGO modified TiO2 nanotubes can increase the short-circuit current and the conversion efficiency of dye-sensitized solar cells. The efficiency is improved by almost two folds as much compared to those of the bare TiO2 nanotubes.展开更多
文摘This paper studied the recycling process of cotton fibers in indigo denim fabrics.X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy were used to characterize the crystal morphology,the grain size and the chemical composition of cotton fibers after alkali treatment.The mechanical property test and the bulk length test were done.The results show that the main functional group of the obtained regenerated cotton still exists,but the absorption peak of the bound alkali appears at the wavenumber of 3701 cm-1,and the crystallinity shows a downward trend.The K/S value increases first and then decreases,and the mechanical properties and the length of the body have a certain degree of damage.
基金supported by the National Key Research and Development Program of China(No.2020YFA0211001)the National Natural Science Foundation of China(Nos.21976024 and 22106017)the Programme of Introducing Talents of Discipline to Universities(China)(B13012).
文摘Reduced graphene oxide(RGO)membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide(GO)membranes,as they have fewer oxygen-containing functional groups and more non-oxidized regions.However,the weak hydrophilicity of RGO membranes inhibits water entry into their channels,resulting in their low water permeability.In this work,we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance.The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m^(2)·h·bar),approximately 16.8 times that of the RGO membrane(3.7 L/(m^(2)·h·bar)).Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGOMXene channels.Benefiting from good conductivity,the RGO-MXene membrane with electroassistance exhibits significantly increased rejection rates for negatively charged dyes(from 56.0%at 0 V to 91.4%at 2.0 V for Orange G)without decreasing the permeate flux,which could be attributed to enhanced electrostatic repulsion under electro-assistance.
基金funded by the Tianjin science and technology support key projects(18YFZCSF00500)the National Science Fund for Distinguished Young Scholars(21425729)the National Natural Science Foundation of China
文摘In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).
文摘A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.
基金financially supported by the University Malaya Prototype Grant (No. RU005G-2016)the Transdisciplinary Research Grant Scheme, TRGS (No. TR002A-2014B)+1 种基金the University Malaya Research Grant (No. RP045B-17AET)the Global Collaborative Programme-SATU Joint Research Scheme from the University of Malaya (No. ST007-2017)
文摘In particular, the dye-sensitised solar cells(DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source.In the present study, advanced radio frequency(RF) magnetron sputtering technique was applied to incorporate titanium dioxide(TiO) dopants into reduced graphene oxide(rGO) nanosheet for improving the power conversion efficiency(PCE) of DSSCs device. An optimum TiOcontent incorporated onto rGO nanosheet plays an important role in improving the PCE of DSSCs by minimising the recombination losses of photo-induced charge carriers.Based on the results obtained, 40-s sputtering duration for incorporating TiOdopants onto rGO nanosheet exhibits a maximum PCE of 8.78% than that of pure rGO film(0.68%). In fact, the presence of optimum content of TiOdopants within rGO nanosheet could act as mediators for efficient separation photo-induced charge carriers. However, the excessive of sputtering duration(e.g. 60 s) of TiOdopants onto rGO nanosheet results higher charge recombination and lowers the PCE of DSSCs(5.39%).
基金supported by the National Natural Science Foundation of China(Grant No.51172102,51302125 and 51303076)
文摘Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-ROO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41 % higher than those of pure ZnS and ROO CEs, respectively. The ZnS-ROO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.
文摘We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized solar cells(DSSCs). The photo-conversion efficiency of DSSCs was significantly enhanced after the addition of rGO, and in addition, the photo-anode showed decreased internal resistance. Analysis of rGO@TiO2 hybrids by transmissions scanning electron microscopy(TEM), X-ray diffraction(XRD), Raman spectra, N2 adsorption and desorption, atomic force microscopy(AFM) and X-ray photoelectron speetroscopy(XPS) demonstrates that the rGO modified TiO2 nanotubes can increase the short-circuit current and the conversion efficiency of dye-sensitized solar cells. The efficiency is improved by almost two folds as much compared to those of the bare TiO2 nanotubes.