The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a probl...A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h_1= 1-cosφ_i-sinφ_icotnφ_i. This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangula...We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.展开更多
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
基金Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University,China(Grant No.15ZY16)
文摘A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h_1= 1-cosφ_i-sinφ_icotnφ_i. This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
基金Project(No. A2006000190)supported by the Natural Science Foundation of Hebei Province,China
文摘We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.