期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种快速高效的人脸检测方法 被引量:7
1
作者 黄兴 王小涛 陆丽华 《计算机工程与应用》 CSCD 2013年第3期198-201,242,共5页
介绍了一种建立在改进型Adaboost算法基础上的人脸检测方法,整个方法分为训练和检测两个阶段。训练阶段包含提取类Haar_Like矩形特征、利用改进型Adaboost算法生成强分类器、级联强分类器生成人脸检测器三步。检测阶段,采用金字塔式的... 介绍了一种建立在改进型Adaboost算法基础上的人脸检测方法,整个方法分为训练和检测两个阶段。训练阶段包含提取类Haar_Like矩形特征、利用改进型Adaboost算法生成强分类器、级联强分类器生成人脸检测器三步。检测阶段,采用金字塔式的穷举搜索法将对待检测图像进行人脸检测。为了解决传统Adaboost算法在训练过程中可能出现退化现象的问题,在Adaboost每轮训练中,定义一个阈值HWt,结合样本是否被错误分类以及当前权值是否大于HWt来给样本更新权值,该方法可以避免训练中可能出现的权重分布严重扭曲的退化现象,提高检测效率。经过编程实践,结果证明该方法检测效率高、检测精度较好。 展开更多
关键词 人脸检测 改进型Adaboost算法 权重分布 矩形特征 金字塔式穷举搜索法 积分图 分类器
下载PDF
一种改进的Adaboost人脸检测方法 被引量:1
2
作者 张志勋 张磊 杨凡 《自动化与仪器仪表》 2013年第6期143-145,148,共4页
针对现有基于粒子群(PSO)策略的Adaboost人脸检测方法没有考虑到PSO容易陷入局部最优且后期收敛速度较慢的问题,提出一种改进的Adaboost人脸检测方法。该方法将自适应逃逸粒子群(AEPSO)引入传统Adaboost人脸检测中,利用粒子表达Haar-Lik... 针对现有基于粒子群(PSO)策略的Adaboost人脸检测方法没有考虑到PSO容易陷入局部最优且后期收敛速度较慢的问题,提出一种改进的Adaboost人脸检测方法。该方法将自适应逃逸粒子群(AEPSO)引入传统Adaboost人脸检测中,利用粒子表达Haar-Like矩形特征,从而将特征选择和分类器构建转化为AEPSO问题进行解决。基于Matlab仿真实验的结果表明,改进后的方法具有较好的检测性能。 展开更多
关键词 人脸检测 PSO ADABOOST AEPSO Haar-Like矩形特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部