To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed...To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.展开更多
基金financially supported by the Key Science and Technology Program of Liaoning Province, China (No.2007414003)
文摘To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.