The feasibility of copper smelter slag processing by ammonia solution treatment was investigated. The central composite rotatable design(CCRD) and approximation method were used to determine the optimum conditions of ...The feasibility of copper smelter slag processing by ammonia solution treatment was investigated. The central composite rotatable design(CCRD) and approximation method were used to determine the optimum conditions of zinc and copper recovery to a solution. The experimental design was done at five levels of the four operating parameters which were the initial concentration of NH–3, the initial Cl ions concentration, leaching time and solid/liquid ratio. Two mathematical models describing dependence of metal recovery on the operating parameters were obtained. The models are successful in predicting the responses. It was found that optimal parameters for zinc and copper recovery are as follows(values for copper are given in brackets): initial CNH3 17.1%(19.9%), initial CCl– 160 g/L(160 g/L), leaching process duration 4.56 h(4.13 h), solid/liquid ratio 0.39(0.53). The maximum Zn and Cu recoveries to solution, obtained experimentally under the conditions, are 81.16% and 56.48%, respectively.展开更多
The cathode materials of spent lithium-ion batteries(LIBs)were recovered via reductive roasting,Na_(2)CO_(3) leaching,and ammonia leaching.The effects of roasting parameters,Na_(2)CO_(3) leaching parameters,and ammoni...The cathode materials of spent lithium-ion batteries(LIBs)were recovered via reductive roasting,Na_(2)CO_(3) leaching,and ammonia leaching.The effects of roasting parameters,Na_(2)CO_(3) leaching parameters,and ammonia leaching parameters on the leaching efficiencies of metals were explored.The results show that the mineral phase of spent LIBs is reconstructed during reductive roasting,and more than 99%of Li can be preferentially leached via Na_(2)CO_(3) leaching.Ni(99.7%)and Co(99.9%)can be leached via one-step ammonia leaching,and Mn cannot be leached.Thus,good leaching selectivity is achieved.The kinetic study shows that the leaching of Ni and Co conforms to chemical reaction control.展开更多
文摘The feasibility of copper smelter slag processing by ammonia solution treatment was investigated. The central composite rotatable design(CCRD) and approximation method were used to determine the optimum conditions of zinc and copper recovery to a solution. The experimental design was done at five levels of the four operating parameters which were the initial concentration of NH–3, the initial Cl ions concentration, leaching time and solid/liquid ratio. Two mathematical models describing dependence of metal recovery on the operating parameters were obtained. The models are successful in predicting the responses. It was found that optimal parameters for zinc and copper recovery are as follows(values for copper are given in brackets): initial CNH3 17.1%(19.9%), initial CCl– 160 g/L(160 g/L), leaching process duration 4.56 h(4.13 h), solid/liquid ratio 0.39(0.53). The maximum Zn and Cu recoveries to solution, obtained experimentally under the conditions, are 81.16% and 56.48%, respectively.
基金the financial support from the Focus on Research and Development Plan in Shandong Province,China(No.2017GSF16102)。
文摘The cathode materials of spent lithium-ion batteries(LIBs)were recovered via reductive roasting,Na_(2)CO_(3) leaching,and ammonia leaching.The effects of roasting parameters,Na_(2)CO_(3) leaching parameters,and ammonia leaching parameters on the leaching efficiencies of metals were explored.The results show that the mineral phase of spent LIBs is reconstructed during reductive roasting,and more than 99%of Li can be preferentially leached via Na_(2)CO_(3) leaching.Ni(99.7%)and Co(99.9%)can be leached via one-step ammonia leaching,and Mn cannot be leached.Thus,good leaching selectivity is achieved.The kinetic study shows that the leaching of Ni and Co conforms to chemical reaction control.