谢卡尔乔夫公式在井网密度影响采收率的计算中已得到广泛的应用 .在谢卡尔乔夫公式的参数中除了井网密度和采收率外 ,还有两个重要的影响参数即井网指数 a和水驱油效率 Ed 需要进一步确认 .简单介绍目前确定井网指数 a和水驱油效率 Ed ...谢卡尔乔夫公式在井网密度影响采收率的计算中已得到广泛的应用 .在谢卡尔乔夫公式的参数中除了井网密度和采收率外 ,还有两个重要的影响参数即井网指数 a和水驱油效率 Ed 需要进一步确认 .简单介绍目前确定井网指数 a和水驱油效率 Ed 的常用方法 ,给出了一种用实际生产资料通过统计、拟合等一系列数学方法确定 a和 Ed 值的方法 ,从而使谢卡尔乔夫公式更接近实际情况 。展开更多
Olfactory ensheathing cells(OECs)are promising seed cells for nerve regeneration.However,their application is limited by the hypoxic environment usually present at the site of injury.Exosomes derived from human umbili...Olfactory ensheathing cells(OECs)are promising seed cells for nerve regeneration.However,their application is limited by the hypoxic environment usually present at the site of injury.Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia.The ability of OECs to migrate is unknown,especially in hypoxic conditions,and the effect of OECs combined with exosomes on peripheral nerve repair is not clear.Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed.In this study,OECs were acquired from the olfactory bulb of Sprague Dawley rats.Human umbilical cord mesenchymal stem cell-derived exosomes(0–400μg/mL)were cultured with OECs for 12–48 hours.After culture with 400μg/mL exosomes for 24 hours,the viability and proliferation of OECs were significantly increased.We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes.Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions,and effectively increased brain-derived neurotrophic factor gene expression,protein levels and secretion.Finally,using a 12 mm left sciatic nerve defect rat model,we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve.These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery.This study was approved by the Institutional Ethical Committee of the Air Force Medical University,China(approval No.IACUC-20181004)on October 7,2018;and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital,China(approval No.30054)on May 20,2019.展开更多
基金supported by grants from the National Natural Science Foundation of China,No.81872699(to MS)Key project of Shaanxi Province,China,No.2017ZDXM-SF-043(to MS)the Military Medical Science and Technology Youth Development Program,China,No.19QNP061(to CL)
文摘Olfactory ensheathing cells(OECs)are promising seed cells for nerve regeneration.However,their application is limited by the hypoxic environment usually present at the site of injury.Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia.The ability of OECs to migrate is unknown,especially in hypoxic conditions,and the effect of OECs combined with exosomes on peripheral nerve repair is not clear.Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed.In this study,OECs were acquired from the olfactory bulb of Sprague Dawley rats.Human umbilical cord mesenchymal stem cell-derived exosomes(0–400μg/mL)were cultured with OECs for 12–48 hours.After culture with 400μg/mL exosomes for 24 hours,the viability and proliferation of OECs were significantly increased.We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes.Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions,and effectively increased brain-derived neurotrophic factor gene expression,protein levels and secretion.Finally,using a 12 mm left sciatic nerve defect rat model,we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve.These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery.This study was approved by the Institutional Ethical Committee of the Air Force Medical University,China(approval No.IACUC-20181004)on October 7,2018;and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital,China(approval No.30054)on May 20,2019.