An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stage...An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.展开更多
基金supported in part by the National Natural Science Foundation of China (61421004,61402316,61333015,61632003)Doctoral Research Fund of Taiyuan University of Science and Technology under grant (20162009)National Key Technologies R&D Program(2016YFB0502002)
文摘An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.