We consider a mathematical problem modelling some characteristics of near field optical microscope.We take a monofrequency line source to illuminate a sample with constant index of refraction and use the scattered fie...We consider a mathematical problem modelling some characteristics of near field optical microscope.We take a monofrequency line source to illuminate a sample with constant index of refraction and use the scattered field data measured near the sample to reconstruct the shape of it. Mixed reciprocity relation and factorization method are applied to solve our problem.Some numerical examples to show the feasibility of the method are presented.展开更多
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by...This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.展开更多
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effec...In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.展开更多
The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multip...The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multiple reciprocity method(RC-MRM).The RC-MRM employs the high-order composite differential operator to solve a much wider variety of inhomogeneous problems with boundary-only collocation nodes while significantly reducing computational cost via a recursive algorithm.In this study,we simulate the Kirchhoff plate bending problems by the BPM based on the RC-MRM.Numerical results show that this approach produces accurate solutions of plates subjected to various loadings with boundary-only discretization.展开更多
A numerical model based on the dual-reciprocity boundary element method(DRBEM)for studying the transient magneto-thermo-viscoelastic waves in a rotating nonhomogeneous anisotropic solid is presented.The formulation is...A numerical model based on the dual-reciprocity boundary element method(DRBEM)for studying the transient magneto-thermo-viscoelastic waves in a rotating nonhomogeneous anisotropic solid is presented.The formulation is tested through its application to the problem of an initially stressed solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity.In the case of plane deformation,a numerical scheme for the implementation of the method is presented and the numerical computations are carried out for the temperature,displacement components and thermal stress components.The validity of DRBEM is examined by considering a magneto-thermo-viscoelastic solid occupies a rectangular region and good agreement is obtained with existent results.The results obtained are presented graphically to show the influence of initial stress on the displacement components and thermal stress components.展开更多
As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both b...As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.展开更多
基金the National Natural Science Foundation of China(Grant No.10431030)
文摘We consider a mathematical problem modelling some characteristics of near field optical microscope.We take a monofrequency line source to illuminate a sample with constant index of refraction and use the scattered field data measured near the sample to reconstruct the shape of it. Mixed reciprocity relation and factorization method are applied to solve our problem.Some numerical examples to show the feasibility of the method are presented.
基金supported by the NationalNatural Science Foundation of China (No.11802151)the Natural Science Foundation of Shandong Province of China (No.ZR2019BA008)the China Postdoctoral Science Foundation (No.2019M652315).
文摘This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.
基金the National Natural Science Foundation of China under Grant No.10474016.
文摘In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.
基金supported by a research project funded by the National Natural Science Foundation of China(Project No.10672051).
文摘The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multiple reciprocity method(RC-MRM).The RC-MRM employs the high-order composite differential operator to solve a much wider variety of inhomogeneous problems with boundary-only collocation nodes while significantly reducing computational cost via a recursive algorithm.In this study,we simulate the Kirchhoff plate bending problems by the BPM based on the RC-MRM.Numerical results show that this approach produces accurate solutions of plates subjected to various loadings with boundary-only discretization.
文摘A numerical model based on the dual-reciprocity boundary element method(DRBEM)for studying the transient magneto-thermo-viscoelastic waves in a rotating nonhomogeneous anisotropic solid is presented.The formulation is tested through its application to the problem of an initially stressed solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity.In the case of plane deformation,a numerical scheme for the implementation of the method is presented and the numerical computations are carried out for the temperature,displacement components and thermal stress components.The validity of DRBEM is examined by considering a magneto-thermo-viscoelastic solid occupies a rectangular region and good agreement is obtained with existent results.The results obtained are presented graphically to show the influence of initial stress on the displacement components and thermal stress components.
基金Foundation item: Supported by the National Natural Science Foundation of China(50608036)
文摘As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.