期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
放疗过程中呼吸引起的肿瘤运动补偿问题的研究进展 被引量:5
1
作者 田珍 白彦灵 +1 位作者 袁克虹 叶大田 《中国医学物理学杂志》 CSCD 2009年第3期1149-1153,共5页
目的:呼吸引起胸腹部肿瘤较大幅度的运动,极大影响调强适形放疗的效率,并对靶区周围的正常组织和器官造成危害,因此需对肿瘤运动进行补偿。方法:补偿方法主要有屏气技术、呼吸门控技术、四维放疗以及实时肿瘤跟踪,分别通过减小肿瘤运动... 目的:呼吸引起胸腹部肿瘤较大幅度的运动,极大影响调强适形放疗的效率,并对靶区周围的正常组织和器官造成危害,因此需对肿瘤运动进行补偿。方法:补偿方法主要有屏气技术、呼吸门控技术、四维放疗以及实时肿瘤跟踪,分别通过减小肿瘤运动、使放疗与呼吸特定时相同步、放疗过程考虑时间变量、并使射野束与肿瘤位置相对固定来补偿肿瘤运动。结果:屏气技术的耐受性较差。呼吸门控耐受性好,但放疗时间增加。四维放疗和实时跟踪成为动态放疗的主要发展方向。系统延迟的存在要求对肿瘤运动进行预测,而传统预测算法均有缺点,需改进或提出新的算法。结论:呼吸引起的肿瘤运动的补偿是精确放疗急需解决的问题,对提高放疗效率、减少对患者的危害有重要意义。 展开更多
关键词 肿瘤运动 呼吸门控技术 四维放疗 实时肿瘤跟踪 肿瘤运动预测
下载PDF
放疗中肿瘤实时监测与追踪技术的研究进展 被引量:4
2
作者 詹梦娜 郭昌 +3 位作者 尹丽 牟忠德 翟振宇 何侠 《中华放射肿瘤学杂志》 CSCD 北大核心 2021年第6期643-647,共5页
肿瘤的运动限制了放疗准确性的进一步提高。肿瘤位置的实时监测与追踪是提高肿瘤放疗精度的一种新兴技术。根据所使用的方法大致分为基于非辐射的系统和基于辐射的系统。前者有超声引导、磁共振引导、电磁追踪、光学影像引导、基于人工... 肿瘤的运动限制了放疗准确性的进一步提高。肿瘤位置的实时监测与追踪是提高肿瘤放疗精度的一种新兴技术。根据所使用的方法大致分为基于非辐射的系统和基于辐射的系统。前者有超声引导、磁共振引导、电磁追踪、光学影像引导、基于人工智能等技术,后者有千伏级、兆伏级X线成像系统和基于CT的引导系统等。本综述回顾了目前放疗中肿瘤实时监测与追踪技术的研究进展,包括各自优缺点以及目前在临床上的运用情况。 展开更多
关键词 肿瘤/放射疗法 肿瘤实时追踪 监测
原文传递
Quality Assurance for Respiratory-Gated Radiotherapy Using the Real-Time Tumor-Tracking Radiotherapy System
3
作者 Takehiro Shiinoki Shinji Kawamura +9 位作者 Takuya Uehara Yuki Yuasa Takeshi Kamomae Takaya Kotakebayashi Masahiro Koike Ryuji Kanzaki Sung Chul Park Hideki Hanazawa Shotaro Takahashi Keiko Shibuya 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2014年第3期125-132,共8页
Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;how... Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for no 展开更多
关键词 Quality ASSURANCE RESPIRATORY GATING real-time tumor-tracking RADIOTHERAPY SYSTEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部