An increasing number of DRTS (Distributed model. The key challenges of such DRTS are guaranteeing Real-Time Systems) are employing an end-to-end aperiodic task utilization on multiple processors to achieve overload ...An increasing number of DRTS (Distributed model. The key challenges of such DRTS are guaranteeing Real-Time Systems) are employing an end-to-end aperiodic task utilization on multiple processors to achieve overload protection, and meeting the end-to-end deadlines of aperiodic tasks. This paper proposes an end-to-end utilization control architecture and an IC-EAT (Integration Control for End-to-End Aperiodic Tasks) algorithm, which features a distributed feedback loop that dynamically enforces the desired utilization bound on multiple processors. IC-EAT integrates admission control with feedback control, which is able to dynamically determine the QoS (Quality of Service) of incoming tasks and guarantee the end-to-end deadlines of admitted tasks. Then an LQOCM (Linear Quadratic Optimal Control Model) is presented. Finally, experiments demonstrate that, for the end-to-end DRTS whose control matrix G falls into the stable region, the IC-EAT is convergent and stable. Moreover,it is capable of providing better QoS guarantees for end-to-end aperiodic tasks and improving the system throughput.展开更多
文摘An increasing number of DRTS (Distributed model. The key challenges of such DRTS are guaranteeing Real-Time Systems) are employing an end-to-end aperiodic task utilization on multiple processors to achieve overload protection, and meeting the end-to-end deadlines of aperiodic tasks. This paper proposes an end-to-end utilization control architecture and an IC-EAT (Integration Control for End-to-End Aperiodic Tasks) algorithm, which features a distributed feedback loop that dynamically enforces the desired utilization bound on multiple processors. IC-EAT integrates admission control with feedback control, which is able to dynamically determine the QoS (Quality of Service) of incoming tasks and guarantee the end-to-end deadlines of admitted tasks. Then an LQOCM (Linear Quadratic Optimal Control Model) is presented. Finally, experiments demonstrate that, for the end-to-end DRTS whose control matrix G falls into the stable region, the IC-EAT is convergent and stable. Moreover,it is capable of providing better QoS guarantees for end-to-end aperiodic tasks and improving the system throughput.