In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, ...In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.展开更多
Model-based controllers can significantly improve the performance of Proton Exchange Membrane Fuel Cell (PEMFC) systems. However, the complexity of these strategies constraints large scale implementation. In this work...Model-based controllers can significantly improve the performance of Proton Exchange Membrane Fuel Cell (PEMFC) systems. However, the complexity of these strategies constraints large scale implementation. In this work, with a view to reduce complexity without affecting performance, two different modeling approaches of a single-cell PEMFC are investigated. A mechanistic model, describing all internal phenomena in a single-cell, and an artificial neural network (ANN) model are tested. To perform this work, databases are measured on a pilot plant. The identification of the two models involves the optimization of the operating conditions in order to build rich databases. The two different models benefits and drawbacks are pointed out using statistical error criteria. Regarding model-based control approach, the computational time of these models is compared during the validation step.展开更多
基金This work was supported by the Key Project of Tianjin Science and Technology Support Program (No. 15ZCZDGX00810), the Natural Science Foundation of Tianjin (No. 14JCZDJC31900), and the National Natural Science Foundation of China (Nos. 91748121, 90916004, 60804004).
文摘In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.
文摘Model-based controllers can significantly improve the performance of Proton Exchange Membrane Fuel Cell (PEMFC) systems. However, the complexity of these strategies constraints large scale implementation. In this work, with a view to reduce complexity without affecting performance, two different modeling approaches of a single-cell PEMFC are investigated. A mechanistic model, describing all internal phenomena in a single-cell, and an artificial neural network (ANN) model are tested. To perform this work, databases are measured on a pilot plant. The identification of the two models involves the optimization of the operating conditions in order to build rich databases. The two different models benefits and drawbacks are pointed out using statistical error criteria. Regarding model-based control approach, the computational time of these models is compared during the validation step.