The authors compute the(rational) Betti number of real toric varieties associated to Weyl chambers of type B, and furthermore show that their integral cohomology is p-torsion free for all odd primes p.
In this paper we propose two original iterated maps to numerically approximate the nth root of a real number. Comparisons between the new maps and the famous Newton-Raphson method are carried out, including fixed poin...In this paper we propose two original iterated maps to numerically approximate the nth root of a real number. Comparisons between the new maps and the famous Newton-Raphson method are carried out, including fixed point determination, stability analysis and measure of the mean convergence time, which is confirmed by our analytical convergence time model. Stability of solutions is confirmed by measuring the Lyapunov exponent over the parameter space of each map. A generalization of the second map is proposed, giving rise to a family of new maps to address the same problem. This work is developed within the language of discrete dynamical systems.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(Nos.NRF-2016R1D1A1A09917654,NRF-2015R1C1A1A01053495)
文摘The authors compute the(rational) Betti number of real toric varieties associated to Weyl chambers of type B, and furthermore show that their integral cohomology is p-torsion free for all odd primes p.
文摘In this paper we propose two original iterated maps to numerically approximate the nth root of a real number. Comparisons between the new maps and the famous Newton-Raphson method are carried out, including fixed point determination, stability analysis and measure of the mean convergence time, which is confirmed by our analytical convergence time model. Stability of solutions is confirmed by measuring the Lyapunov exponent over the parameter space of each map. A generalization of the second map is proposed, giving rise to a family of new maps to address the same problem. This work is developed within the language of discrete dynamical systems.