The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize...The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions.However,the RES relies on natural resources for energy generation,such as sunlight,wind,water,geothermal,which are generally un-predictable and reliant on weather,season,and year.To account for these intermittencies,renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed.Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs.This review attempts to provide a critical review of the advancements in the energy storage system from 1850-2022,including its evolution,classification,operating principles and comparison.展开更多
This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremedia...This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremediation have been introduced and critically reviewed in the context of decontaminating the soils.Next,biopolymerisation,biomineralisation and bioneutralisation processes have been depicted with a special emphasis on the applications including but not limited to soil stabilisation,soil erosion prevention,anti-desertification and pH neutralisation.Each of these methods have their own limitations and bottlenecks while scaling up,and these challenges have been summarised and some possible paths to overcome the challenges have also been discussed.The state of the art of electromagnetic(EM)monitoring methods to capture the effects of biomediation on spatio-temporal soil properties are then highlighted as a non-invasive and rapid pathway to track the progress of biomediated soil processes.Finally,each of the technologies discussed have been evaluated for their maturity level using the principles of technology readiness level(TRL).A majority of the technologies amounting to around 77%are still in the TRL 4e7,i.e.in the valley of death.It is thus evident that development of these technologies needs to be supported with appropriate funding for improving their maturity to a level of industrial deployment.展开更多
The construction industry is a major contributor to environmental pollution.The effect of the construction industry on the environment may be mitigated using eco-friendly construction materials,such as biocomposites.O...The construction industry is a major contributor to environmental pollution.The effect of the construction industry on the environment may be mitigated using eco-friendly construction materials,such as biocomposites.Once developed,biocomposites may offer a viable alternative to the current materials in use.However,biocomposites are lagging in terms of adoption and eventual use in the construction industry.This article provides insights into the steps for biocomposites to become a product that is ready to use by the construction industry in a structural role.The development and the adoption of such a material is tackled with the use of two concepts,i.e.,technology readiness level and roadmapping,and explored in a case study on the“liquid wood”.Furthermore,interviews in the construction industry are carried out to identify the industry’s take on biocomposites.A customized roadmap,which underlines a mostly nontechnical perspective concerning this material,has emerged.Additionally,the adoption and diffusion issues that the“liquid wood”may encounter are outlined and complemented with further recommendations.展开更多
文摘The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions.However,the RES relies on natural resources for energy generation,such as sunlight,wind,water,geothermal,which are generally un-predictable and reliant on weather,season,and year.To account for these intermittencies,renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed.Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs.This review attempts to provide a critical review of the advancements in the energy storage system from 1850-2022,including its evolution,classification,operating principles and comparison.
文摘This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremediation have been introduced and critically reviewed in the context of decontaminating the soils.Next,biopolymerisation,biomineralisation and bioneutralisation processes have been depicted with a special emphasis on the applications including but not limited to soil stabilisation,soil erosion prevention,anti-desertification and pH neutralisation.Each of these methods have their own limitations and bottlenecks while scaling up,and these challenges have been summarised and some possible paths to overcome the challenges have also been discussed.The state of the art of electromagnetic(EM)monitoring methods to capture the effects of biomediation on spatio-temporal soil properties are then highlighted as a non-invasive and rapid pathway to track the progress of biomediated soil processes.Finally,each of the technologies discussed have been evaluated for their maturity level using the principles of technology readiness level(TRL).A majority of the technologies amounting to around 77%are still in the TRL 4e7,i.e.in the valley of death.It is thus evident that development of these technologies needs to be supported with appropriate funding for improving their maturity to a level of industrial deployment.
文摘The construction industry is a major contributor to environmental pollution.The effect of the construction industry on the environment may be mitigated using eco-friendly construction materials,such as biocomposites.Once developed,biocomposites may offer a viable alternative to the current materials in use.However,biocomposites are lagging in terms of adoption and eventual use in the construction industry.This article provides insights into the steps for biocomposites to become a product that is ready to use by the construction industry in a structural role.The development and the adoption of such a material is tackled with the use of two concepts,i.e.,technology readiness level and roadmapping,and explored in a case study on the“liquid wood”.Furthermore,interviews in the construction industry are carried out to identify the industry’s take on biocomposites.A customized roadmap,which underlines a mostly nontechnical perspective concerning this material,has emerged.Additionally,the adoption and diffusion issues that the“liquid wood”may encounter are outlined and complemented with further recommendations.