Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p...Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.展开更多
Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many micro...Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. Zn O-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. Zn O is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered Zn O-NPs antibacterial activity including testing methods, impact of UV illumination, Zn O particle properties(size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species(ROS) including hydrogen peroxide(H2O2), OH-(hydroxyl radicals), and O2-2(peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to Zn O-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions.These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on Zn O abrasive surface texture. One functional application of the Zn O antibacterial bioactivity was discussed in food packaging industry where Zn O-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of Zn O-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.展开更多
The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing t...The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.展开更多
基金supported by the JSPS KAKENHI(16H02268)from MEXTJapan and by the CRI(2012R1A3A2048842)Basic Science Research Program(NRF-2020R1I1A1A01074630)through NRF of Korea.
文摘Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.
基金support from a research university Grant number 1001/PFIZIK/814174 of Universiti Sains Malaysia(USM)
文摘Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. Zn O-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. Zn O is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered Zn O-NPs antibacterial activity including testing methods, impact of UV illumination, Zn O particle properties(size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species(ROS) including hydrogen peroxide(H2O2), OH-(hydroxyl radicals), and O2-2(peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to Zn O-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions.These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on Zn O abrasive surface texture. One functional application of the Zn O antibacterial bioactivity was discussed in food packaging industry where Zn O-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of Zn O-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.