This paper presents a novel algorithm for planar curve offsetting. The basic idea is to regard the locus relative to initial base circle, which is formed by moving the unit normal vectors of the base curve, as a unit ...This paper presents a novel algorithm for planar curve offsetting. The basic idea is to regard the locus relative to initial base circle, which is formed by moving the unit normal vectors of the base curve, as a unit circular arc first, then accurately to represent it as a rational curve, and finally to reparameterize it in a particular way to approximate the offset. Examples illustrated that the algorithm yields fewer curve segments and control points as well as C^1 continuity, and so has much significance in terms of saving computing time, reducing the data storage and smoothing curves entirely.展开更多
Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is bas...Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.展开更多
基金Supported by the National Natural Science Foundation of China (6093300760873111)
文摘This paper presents a novel algorithm for planar curve offsetting. The basic idea is to regard the locus relative to initial base circle, which is formed by moving the unit normal vectors of the base curve, as a unit circular arc first, then accurately to represent it as a rational curve, and finally to reparameterize it in a particular way to approximate the offset. Examples illustrated that the algorithm yields fewer curve segments and control points as well as C^1 continuity, and so has much significance in terms of saving computing time, reducing the data storage and smoothing curves entirely.
文摘Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.