This paper shows that under a necessary and sufficient condition, there exists a cubic rational Bezier curve with convex hull property and convexity preserving property which passes two given points inside the control...This paper shows that under a necessary and sufficient condition, there exists a cubic rational Bezier curve with convex hull property and convexity preserving property which passes two given points inside the control polygon.展开更多
This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper pre...This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper presents these verifications in the general cases, i.e., for degree n rational Bezier curves. Thus some interesting interplay between the structure of the n x n implicitization matrix and the de Casteljau algorithm is revealed.展开更多
The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the a...The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the affine invariant property, a kind of generalized mono- tonicity, called direction monotonicity, is introduced for rational Bezier curves. The direction monotonicity is applied to both planar and space curves and to both Cartesian and affine co- ordinate systems, and it includes the traditional monotonicity as a subcase. By means of it, proper affine coordinate systems may be chosen to make some rational Bezier curves monotonic. Direction monotonic interpolation may be realized for some of the traditionally nonmonotonic data as well.展开更多
文摘This paper shows that under a necessary and sufficient condition, there exists a cubic rational Bezier curve with convex hull property and convexity preserving property which passes two given points inside the control polygon.
文摘This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper presents these verifications in the general cases, i.e., for degree n rational Bezier curves. Thus some interesting interplay between the structure of the n x n implicitization matrix and the de Casteljau algorithm is revealed.
基金Supported by the National Natural Science Foundation of China(6140220111326243+3 种基金612723001137117411501252)the Jiangsu Natural Science Foundation of China(BK20130117)
文摘The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the affine invariant property, a kind of generalized mono- tonicity, called direction monotonicity, is introduced for rational Bezier curves. The direction monotonicity is applied to both planar and space curves and to both Cartesian and affine co- ordinate systems, and it includes the traditional monotonicity as a subcase. By means of it, proper affine coordinate systems may be chosen to make some rational Bezier curves monotonic. Direction monotonic interpolation may be realized for some of the traditionally nonmonotonic data as well.