脉动热管是一种结构简单、传热性能突出的新型传热元件,由于运行过程涉及沸腾与冷凝及两相流动,传热及流动机理复杂,因此目前对其运行过程的相关数值模拟尚不成熟。本文采用VOF(volume of fluid)模型,考虑表面张力和壁面接触角的影响...脉动热管是一种结构简单、传热性能突出的新型传热元件,由于运行过程涉及沸腾与冷凝及两相流动,传热及流动机理复杂,因此目前对其运行过程的相关数值模拟尚不成熟。本文采用VOF(volume of fluid)模型,考虑表面张力和壁面接触角的影响,采用数值模拟软件对单环路脉动热管的流动及传热特性进行了研究。数值模拟中,单环路脉动热管的充液率为40%~60%,热端加热功率为10~40W,探讨了热管蒸发段与冷凝段长度比对热管启动及换热性能的影响,并分析了脉动热管运行时流型特征。结果表明:随蒸发段和冷凝段长度比值增大,脉动热管启动时间缩短,且换热性能有一定提高;但在低充液率时,容易出现"干烧"现象。在低加热功率时,脉动热管的启动方式为温度突变式;而在高加热功率时,其启动方式为温度渐变式。此外,通过蒸发段的温度振荡特征可以确定脉动热管的启动时间。展开更多
Based on orthogonal experiments,the effects of voltage,frequency,duty ratio and their interactions on the thickness and corrosion resistance of coatings prepared by plasma electrolytic oxidation(PEO)on aluminum in an ...Based on orthogonal experiments,the effects of voltage,frequency,duty ratio and their interactions on the thickness and corrosion resistance of coatings prepared by plasma electrolytic oxidation(PEO)on aluminum in an alkaline silicate-containing electrolyte were investigated.The thicknesses of these coatings were obtained by measuring their cross-section using Image J software.Their corrosion resistances were evaluated in HCl and NaCl media through spot test and electrochemical test.The results show that the experimental design of this study is the key to investigate the interactions among these electrical parameters.Additionally,not only each independent factor,but also their interactions exhibit a remarkable influence on the coatings.The combination of high voltage,low frequency and large duty ratio significantly increases the coating thickness and content of the corrosion resistance phase,and thus improves the corrosion resistance of the coating in HNO3 medium.Conversely,the coating possessing the densest microstructure and best corrosion resistance in NaCl medium is obtained when low voltage and high frequency match with a small duty ratio.展开更多
文摘脉动热管是一种结构简单、传热性能突出的新型传热元件,由于运行过程涉及沸腾与冷凝及两相流动,传热及流动机理复杂,因此目前对其运行过程的相关数值模拟尚不成熟。本文采用VOF(volume of fluid)模型,考虑表面张力和壁面接触角的影响,采用数值模拟软件对单环路脉动热管的流动及传热特性进行了研究。数值模拟中,单环路脉动热管的充液率为40%~60%,热端加热功率为10~40W,探讨了热管蒸发段与冷凝段长度比对热管启动及换热性能的影响,并分析了脉动热管运行时流型特征。结果表明:随蒸发段和冷凝段长度比值增大,脉动热管启动时间缩短,且换热性能有一定提高;但在低充液率时,容易出现"干烧"现象。在低加热功率时,脉动热管的启动方式为温度突变式;而在高加热功率时,其启动方式为温度渐变式。此外,通过蒸发段的温度振荡特征可以确定脉动热管的启动时间。
基金Project(1111RJDA011)supported by the Creative Research Group Fund of Gansu Province,ChinaProject(SKLAB02015006)supported by the State Key Laboratory Open Fund of Advanced Processing and Recycling of Nonferrous Metals,China。
文摘Based on orthogonal experiments,the effects of voltage,frequency,duty ratio and their interactions on the thickness and corrosion resistance of coatings prepared by plasma electrolytic oxidation(PEO)on aluminum in an alkaline silicate-containing electrolyte were investigated.The thicknesses of these coatings were obtained by measuring their cross-section using Image J software.Their corrosion resistances were evaluated in HCl and NaCl media through spot test and electrochemical test.The results show that the experimental design of this study is the key to investigate the interactions among these electrical parameters.Additionally,not only each independent factor,but also their interactions exhibit a remarkable influence on the coatings.The combination of high voltage,low frequency and large duty ratio significantly increases the coating thickness and content of the corrosion resistance phase,and thus improves the corrosion resistance of the coating in HNO3 medium.Conversely,the coating possessing the densest microstructure and best corrosion resistance in NaCl medium is obtained when low voltage and high frequency match with a small duty ratio.