Binocular computer vision is based on bionics, after the calibration through the camera head by double-exposure image synchronization, access to the calculation of two-dimensional image pixels of the three-dimensional...Binocular computer vision is based on bionics, after the calibration through the camera head by double-exposure image synchronization, access to the calculation of two-dimensional image pixels of the three-dimensional depth information. In this paper, a fast and robust stereo vision algorithm is described to perform in-vehicle obstacles detection and characterization. The stereo algorithm which provides a suitable representation of the geometric content of the road scene is described, and an in-vehicle embedded system is presented. We present the way in which the algorithm is used, and then report experiments on real situations which show that our solution is accurate, reliable and efficient. In particular, both processes are fast, generic, robust to noise and bad conditions, and work even with partial occlusion.展开更多
论述了自行研制的半导体激光雷达能见度仪的工作原理、基本结构及参数,提出了一种稳定的消光系数迭代算法。利用该半导体激光雷达能见度仪与美国Belfort model 6230A型能见度仪对水平及斜程能见度进行了对比实验。对比实验表明:对于水...论述了自行研制的半导体激光雷达能见度仪的工作原理、基本结构及参数,提出了一种稳定的消光系数迭代算法。利用该半导体激光雷达能见度仪与美国Belfort model 6230A型能见度仪对水平及斜程能见度进行了对比实验。对比实验表明:对于水平能见度,平均相对误差在10%以内的占总量的45.6%,平均相对误差在20%以内的占总量的84.7%,平均相对误差在30%以内的占总量的91.2%;对于斜程能见度,不同天气条件下,能见度变化趋势明显,反映了斜程能见度与水平能见度探测的差别与意义。充分说明该能见度仪能够在各种气候条件下测量水平及斜程能见度,所提出的反演能见度的迭代算法稳定可靠。展开更多
文摘Binocular computer vision is based on bionics, after the calibration through the camera head by double-exposure image synchronization, access to the calculation of two-dimensional image pixels of the three-dimensional depth information. In this paper, a fast and robust stereo vision algorithm is described to perform in-vehicle obstacles detection and characterization. The stereo algorithm which provides a suitable representation of the geometric content of the road scene is described, and an in-vehicle embedded system is presented. We present the way in which the algorithm is used, and then report experiments on real situations which show that our solution is accurate, reliable and efficient. In particular, both processes are fast, generic, robust to noise and bad conditions, and work even with partial occlusion.
文摘论述了自行研制的半导体激光雷达能见度仪的工作原理、基本结构及参数,提出了一种稳定的消光系数迭代算法。利用该半导体激光雷达能见度仪与美国Belfort model 6230A型能见度仪对水平及斜程能见度进行了对比实验。对比实验表明:对于水平能见度,平均相对误差在10%以内的占总量的45.6%,平均相对误差在20%以内的占总量的84.7%,平均相对误差在30%以内的占总量的91.2%;对于斜程能见度,不同天气条件下,能见度变化趋势明显,反映了斜程能见度与水平能见度探测的差别与意义。充分说明该能见度仪能够在各种气候条件下测量水平及斜程能见度,所提出的反演能见度的迭代算法稳定可靠。