期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
高炉铁水质量鲁棒正则化随机权神经网络建模 被引量:13
1
作者 李温鹏 周平 《自动化学报》 EI CSCD 北大核心 2020年第4期721-733,共13页
高炉炼铁过程运行优化与控制依赖于可靠、稳定的难测铁水质量(Molten iron quality, MIQ)指标模型.针对现有MIQ建模方法的不足,本文提出一种新型的数据驱动鲁棒正则化随机权神经网络(Random vector functional-link networks,RVFLNs)算... 高炉炼铁过程运行优化与控制依赖于可靠、稳定的难测铁水质量(Molten iron quality, MIQ)指标模型.针对现有MIQ建模方法的不足,本文提出一种新型的数据驱动鲁棒正则化随机权神经网络(Random vector functional-link networks,RVFLNs)算法,用于实现MIQ指标在线估计的鲁棒建模.首先,为了提高建模效率和降低计算复杂度,采用数据驱动典型相关性分析方法从众多变量中提取与MIQ相关性最强的变量作为建模输入变量;其次,由于传统RVFLNs网络的输出权值由最小二乘估计获得,易受离群数据影响而鲁棒性差,引入基于Gaussian分布加权的M估计技术,提出新型鲁棒RVFLNs算法建立多元MIQ指标的鲁棒模型;同时,在鲁棒加权后的最小二乘损失函数基础上,进一步引入L1和L2两个正则化项以构成优化目标函数的Elastic net,用于稀疏化RVFLNs网络的输出权值矩阵,解决RVFLNs网络多重共线性和过拟合的问题.最后,基于某大型高炉工业数据,进行充分数据实验,结果表明所提方法具有更高的建模与估计精度以及较强的鲁棒性能. 展开更多
关键词 rvflns 鲁棒建模 Gaussian分布加权M估计 高炉炼铁 铁水质量
下载PDF
基于稀疏表示剪枝集成建模的烧结终点位置智能预测
2
作者 周平 吴忠卫 +1 位作者 张瑞垚 吴永建 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期436-446,共11页
烧结终点位置(BTP)是烧结过程至关重要的参数,直接决定着最终烧结矿的质量.由于BTP难以直接在线检测,因此,通过智能学习建模来实现BTP的在线预测并在此基础上进行操作参数调节对提高烧结矿质量具有重要意义.针对这一实际工程问题,首先... 烧结终点位置(BTP)是烧结过程至关重要的参数,直接决定着最终烧结矿的质量.由于BTP难以直接在线检测,因此,通过智能学习建模来实现BTP的在线预测并在此基础上进行操作参数调节对提高烧结矿质量具有重要意义.针对这一实际工程问题,首先提出一种基于遗传优化的Wrapper特征选择方法,可选取使后续预测建模性能最优的特征组合;在此基础上,为了解决单一学习器容易过拟合的问题,提出了基于随机权神经网络(RVFLNs)的稀疏表示剪枝(SRP)集成建模算法,即SRP-ERVFLNs算法.所提算法采用建模速度快、泛化性能好的RVFLNs作为个体基学习器,采用对基学习器基函数与隐层节点数等参数进行扰动的方式来增加集成学习子模型间的差异性;同时,为了进一步提高集成模型的泛化性能与计算效率,引入稀疏表示剪枝算法,实现对集成模型的高效剪枝;最后,将所提算法用于烧结过程BTP的预测建模.工业数据实验表明,所提方法相比于其他方法具有更好的预测精度、泛化性能和计算效率. 展开更多
关键词 智能预测 特征选择 集成学习 稀疏表示 剪枝 烧结终点位置 随机权神经网络(rvflns)
下载PDF
基于M-SVR与RVFLNs的高炉十字测温中心温度估计 被引量:2
3
作者 周平 尤磊 +1 位作者 刘记平 张兴 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第5期614-619,共6页
由于高炉中心温度较高,十字测温中心位置传感器极易损坏,并且更换周期长,因而导致无法及时判断炉顶煤气流分布.采用多输出支持向量回归(M-SVR)和随机权神经网络(RVFLNs)两种数据驱动智能建模方法建立高炉十字测温中心带温度估计模型,并... 由于高炉中心温度较高,十字测温中心位置传感器极易损坏,并且更换周期长,因而导致无法及时判断炉顶煤气流分布.采用多输出支持向量回归(M-SVR)和随机权神经网络(RVFLNs)两种数据驱动智能建模方法建立高炉十字测温中心带温度估计模型,并基于实际工业数据对建立的模型进行验证和比较分析.结果表明,在样本数量较小时,M-SVR模型和RVFLNs模型都具有较好的温度估计效果,但当样本数量充足时,M-SVR模型的泛化性能和估计精度更优于RVFLNs模型. 展开更多
关键词 高炉炼铁 十字测温 温度估计 多输出支持向量回归机 随机权神经网络
下载PDF
磨浆过程输出纤维长度随机分布预测PDF控制 被引量:1
4
作者 李明杰 周平 《自动化学报》 EI CSCD 北大核心 2019年第10期1923-1932,共10页
磨浆过程作为制浆和造纸工业最为重要的生产环节之一,其输出纤维长度随机分布(Fiber length stochastic distribution,FLSD)形状直接决定着后续造纸过程的能耗和纸品质量.针对传统的均值和方差难以描述输出FLSD特征,即具有非高斯分布特... 磨浆过程作为制浆和造纸工业最为重要的生产环节之一,其输出纤维长度随机分布(Fiber length stochastic distribution,FLSD)形状直接决定着后续造纸过程的能耗和纸品质量.针对传统的均值和方差难以描述输出FLSD特征,即具有非高斯分布特性,本文提出一种磨浆过程输出FLSD的预测概率密度函数(Probability density function,PDF)控制方法.首先,采用径向基函数(Radical basis function,RBF)神经网络逼近输出FLSD的PDF,在采用迭代学习方法完成基函数参数整定基础上对相应权值向量进行估计.其次,针对权值之间存在强耦合特点,利用随机权神经网络(Random vector functional-networks,RVFLNs)建立表征输入变量和权值之间关系的预测模型.最后,基于建立的输出FLSD模型设计预测PDF控制器,最终实现对期望输出PDF的跟踪控制.基于工业数据实验验证了所提方法的有效性,为磨浆过程优化运行和控制提供理论依据. 展开更多
关键词 磨浆过程 纤维长度随机分布 预测PDF控制 随机权神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部