Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are prop...Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.展开更多
In this paper, we discuss the driving-response synchronization problem for two memristive neural networks with retarded and advanced arguments under the condition of additional noise. The control law is related to the...In this paper, we discuss the driving-response synchronization problem for two memristive neural networks with retarded and advanced arguments under the condition of additional noise. The control law is related to the linear time-delay feedback term, and the discontinuous feedback term. Moreover, the random different equation is used to prove the stability of this theory. At the end, the simulation results verify the correctness of the theoretical results.展开更多
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(416811,416812)National Natural Science Foundation of China(61573003)part by the Scientific Research Fund of Hunan Provincial Education Department of China(15k026)
基金Project supported by the Sichuan Science and Technology Program,China(Grant No.2019YJ0530)the Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)+1 种基金the Innovative Training Program for College Student of Sichuan Normal University,China(Grant No.S20191063609)the National Natural Science Foundation of China(Grant No.61205079)。
文摘Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.
文摘In this paper, we discuss the driving-response synchronization problem for two memristive neural networks with retarded and advanced arguments under the condition of additional noise. The control law is related to the linear time-delay feedback term, and the discontinuous feedback term. Moreover, the random different equation is used to prove the stability of this theory. At the end, the simulation results verify the correctness of the theoretical results.