To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply ...To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.展开更多
Based upon the micro-stochastic failure mechanisms of composites,a new micromechanical statistical model,i.e.randomly enlarging critical core theory,for the tensile failure of unidirectional composites is proposed,wit...Based upon the micro-stochastic failure mechanisms of composites,a new micromechanical statistical model,i.e.randomly enlarging critical core theory,for the tensile failure of unidirectional composites is proposed,with which we can overcome the primary imperfections of the existing chain-of-bundles probability model.On the basis of the established statistical model,the strength distribution and the failure criterion of composites are derived.The predictions of strength for T300/5208 and glass/epoxy show very good agreement with the existing experimental results,thus verifying the reasonableness and correctness of the present theory.展开更多
Slope stability assessment is a geotechnical problem characterized by many sources of uncertainty. In clas- sical reliability analysis, only the randomness of uncertainties is taken into account but the fuzziness of t...Slope stability assessment is a geotechnical problem characterized by many sources of uncertainty. In clas- sical reliability analysis, only the randomness of uncertainties is taken into account but the fuzziness of them is ignored. In this paper, a fuzzy probability approach and a fuzzy JC method are presented for the reliability analysis. The two methods have been applied to stability analysis of a certain slope of permanent ship lock in the Three-Gorges Project. The results obtained from these two methods are basically the same. However, compared with the fuzzy probability means, the fuzzy JC method can reflect the real situation better because it uses a fuzzy-based analysis applied to not only limit state equation but also mechanical parameters.展开更多
基金Financial supports from National Science Foundation of China(Grant Nos.51609072,51879091,51479050 and 41630638)the National Key Basic Research Program of China("973" Program)(Grant No.2015CB057901)the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No.201501035-03)
文摘To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.
基金Project supported by the National Natural Science Foundation of China
文摘Based upon the micro-stochastic failure mechanisms of composites,a new micromechanical statistical model,i.e.randomly enlarging critical core theory,for the tensile failure of unidirectional composites is proposed,with which we can overcome the primary imperfections of the existing chain-of-bundles probability model.On the basis of the established statistical model,the strength distribution and the failure criterion of composites are derived.The predictions of strength for T300/5208 and glass/epoxy show very good agreement with the existing experimental results,thus verifying the reasonableness and correctness of the present theory.
文摘Slope stability assessment is a geotechnical problem characterized by many sources of uncertainty. In clas- sical reliability analysis, only the randomness of uncertainties is taken into account but the fuzziness of them is ignored. In this paper, a fuzzy probability approach and a fuzzy JC method are presented for the reliability analysis. The two methods have been applied to stability analysis of a certain slope of permanent ship lock in the Three-Gorges Project. The results obtained from these two methods are basically the same. However, compared with the fuzzy probability means, the fuzzy JC method can reflect the real situation better because it uses a fuzzy-based analysis applied to not only limit state equation but also mechanical parameters.