Modern radiation treatments have become fairly complex and involve in utilizing a variety of medical devices to achieve the goal of providing conformal radiation dose coverage to the tumor target(s)while maximizing th...Modern radiation treatments have become fairly complex and involve in utilizing a variety of medical devices to achieve the goal of providing conformal radiation dose coverage to the tumor target(s)while maximizing the sparing of normal organ structures.Recently,different forms of linear accelerators/radioactive source based machines have been invented and developed with the aim of providing improved treatments and more treatment options.Besides linear accelerators(Linac)that have been undergoing constant improvement and advancement and can deliver fairly complicated dose distribution patterns,imaging systems,computer information and calculation systems have been more and more integrated into radiotherapy processes.To bring radiotherapy to a potentially higher level,many institutions have either acquired or started to consider particle therapy,especially proton therapy.The complexity of modern radiotherapy demands in-depth understanding of radiation physics and machine engineering as well as computer information systems.This paper is intended to provide an introductory description of radiation oncology and related procedures,and to provide an overview of the current status of medical devices in radiotherapy in the United States of America.This paper covers the radiation delivery systems,imaging systems,treatment planning systems,record and verify systems,and QA systems.展开更多
Radiation oncology is one of the three major treatment modalities to manage cancer patient cares,and is a discipline mainly driven by technology and medical devices.Modern radiation treatments have become fairly compl...Radiation oncology is one of the three major treatment modalities to manage cancer patient cares,and is a discipline mainly driven by technology and medical devices.Modern radiation treatments have become fairly complex and involve in utilizing a variety of medical devices to achieve the goal of providing conformal radiation dose coverage to the tumor target(s)while maximizing the sparing of normal organ structures.Recently,different forms of linear accelerators/radioactive source based machines have been invented and developed with the aim of providing improved treatments and more treatment options.Besides linear accelerators(Linac)that have been undergoing constant improvement and advancement and can deliver fairly complicated dose distribution patterns,imaging systems,computer information and calculation systems have been more and more integrated into radiotherapy processes.To bring radiotherapy to a potentially higher level,many institutions have either acquired or started to consider particle therapy,especially proton therapy.The complexity of modern radiotherapy demands in-depth understanding of radiation physics and machine engineering as well as computer information systems.This paper is intended to provide an introductory description of radiation oncology and related procedures,and to provide an overview of the current status of medical devices in radiotherapy in the United States of America.This paper covers the radiation delivery systems,imaging systems,treatment planning systems,record and verify systems,and QA systems.展开更多
文摘目的 比较Monaco计划系统4种通量平滑度对食管癌放疗计划的影响。方法 选取我院23例食管癌患者为研究对象,按照计划靶区50 Gy/25次的处方剂量,分别使用4种通量平滑模式(Off、Low、Medium和High)设计4组放疗计划,将处方剂量归一至95%的靶区体积后,统计各评价指标,并使用基于等效均匀剂量的参数化正常组织并发症概率(Normal Tissue Complication Probability,NTCP)模型进行评估。使用SPSS 27.0软件进行单因素方差分析,比较各组之间的差异,并使用优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)进行综合评估。结果 4组计划在靶区剂量(D_(98)、D_(2)、D_(mean)、适形度指数、均匀性指数)、危及器官剂量(双肺V_(30)、V_(20)、V_(10)、V_(5)、D_(mean)、NTCP;心脏V30、Dmean、NTCP;脊髓Dmax)以及计划执行时间和计划总控制点数目方面差异均无统计学意义(P>0.05),在治疗机器跳数(Monitor Units,MU)方面差异显著(P<0.05),且随着通量平滑程度增加,MU呈降低趋势。TOPSIS综合分析结果显示LOW组综合评分最高。结论 在食管癌放疗计划设计中,4种通量平滑模式均能满足临床治疗要求,通量平滑度的提高可降低治疗MU;考虑计划整体指标的情况下,可选择Low模式达到最优的剂量结果。
文摘Modern radiation treatments have become fairly complex and involve in utilizing a variety of medical devices to achieve the goal of providing conformal radiation dose coverage to the tumor target(s)while maximizing the sparing of normal organ structures.Recently,different forms of linear accelerators/radioactive source based machines have been invented and developed with the aim of providing improved treatments and more treatment options.Besides linear accelerators(Linac)that have been undergoing constant improvement and advancement and can deliver fairly complicated dose distribution patterns,imaging systems,computer information and calculation systems have been more and more integrated into radiotherapy processes.To bring radiotherapy to a potentially higher level,many institutions have either acquired or started to consider particle therapy,especially proton therapy.The complexity of modern radiotherapy demands in-depth understanding of radiation physics and machine engineering as well as computer information systems.This paper is intended to provide an introductory description of radiation oncology and related procedures,and to provide an overview of the current status of medical devices in radiotherapy in the United States of America.This paper covers the radiation delivery systems,imaging systems,treatment planning systems,record and verify systems,and QA systems.
文摘Radiation oncology is one of the three major treatment modalities to manage cancer patient cares,and is a discipline mainly driven by technology and medical devices.Modern radiation treatments have become fairly complex and involve in utilizing a variety of medical devices to achieve the goal of providing conformal radiation dose coverage to the tumor target(s)while maximizing the sparing of normal organ structures.Recently,different forms of linear accelerators/radioactive source based machines have been invented and developed with the aim of providing improved treatments and more treatment options.Besides linear accelerators(Linac)that have been undergoing constant improvement and advancement and can deliver fairly complicated dose distribution patterns,imaging systems,computer information and calculation systems have been more and more integrated into radiotherapy processes.To bring radiotherapy to a potentially higher level,many institutions have either acquired or started to consider particle therapy,especially proton therapy.The complexity of modern radiotherapy demands in-depth understanding of radiation physics and machine engineering as well as computer information systems.This paper is intended to provide an introductory description of radiation oncology and related procedures,and to provide an overview of the current status of medical devices in radiotherapy in the United States of America.This paper covers the radiation delivery systems,imaging systems,treatment planning systems,record and verify systems,and QA systems.