An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). T...An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). The expressions of nondimensional sound power are formulated andthe asymptotic forms of sound power in the low frequency regions are derived. The radiatedsound power is shown as a function of the stiffness of elastic foundation, in terms of stiffness fac-torψ, the moving speed of line force, in terms of Math number M, and the frequency, in termsof wavenumber ratio γ . The effects of the parameter ψ in conjunction with the parameters Mand γ on the radiated sound power level and the phenomenon of coincidence radiation are alsoinvestigated in detail.展开更多
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which i...Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.展开更多
文摘An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). The expressions of nondimensional sound power are formulated andthe asymptotic forms of sound power in the low frequency regions are derived. The radiatedsound power is shown as a function of the stiffness of elastic foundation, in terms of stiffness fac-torψ, the moving speed of line force, in terms of Math number M, and the frequency, in termsof wavenumber ratio γ . The effects of the parameter ψ in conjunction with the parameters Mand γ on the radiated sound power level and the phenomenon of coincidence radiation are alsoinvestigated in detail.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.
基金supported by the National Natural Science Foundation of China(Grant Nos.11321062,91016008 and 91216107)
文摘Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.