A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly...A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly affected by the distance between the two plates, but they do not follow the same way. The chain size decays drastically with increasing h (h is the distance between two plates), until a basin occurs, and a universal h/(Rg)o dependence for polymer chains with different degrees of polymerization can be obtained. While, for the chain's diffusion coefficient, it decays monotonously and there is no such basin-like behavior. Furthermore, we studied the radial distribution function of confined polymer chains to explain the reason why there is a difference for the decay behaviors between dynamic properties and static properties. Besides, we also give the degree of confinement dependence of the static scaling exponent for a single polymer chain. Our work provides an efficient way to estimate the dynamics and static properties of confined polymer chains, and also helps us to understand the behavior of polymer chains under confinement.展开更多
We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-depende...We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.展开更多
Experimental and theoretical studies of the radial distribution function of the electron temperature (RDFT) in a low-density plasma and weakly ionized gas for the abnormal glow region are presented. Experimentally, th...Experimental and theoretical studies of the radial distribution function of the electron temperature (RDFT) in a low-density plasma and weakly ionized gas for the abnormal glow region are presented. Experimentally, the electron temperatures and densities are measured by a Langmuir probe moved radially from the center to the edge of the cathode electrode for helium gas at different pressures in the low-pressure glow discharge. The comparison of the final experimental data for the radial distribution of electron temperatures and densities for different low pressures ranging from 0.2 to 1.2 torr, with the final proved equation of RDFT confirms that the electron temperatures decrease with increasing product of radial distance and gas pressures, showing a radial decrement dependence of the electron temperature from the center to the edge of the electrode. This is attributed to the increase of the number of electron-atom collisions at higher gas pressures and consequently of the rate of ionization. For the axial distance (L) from the tip of the probe to cathode electrode and the cathode electrode radius (R), a theoretical and experimental comparison for the two conditions L R and L > R, for both cases the produced plasma temperatures decrease and densities increase. It is concluded that the RDFT accurately shows a dramatic decrease for L R by 60% less than RDFT values for L > R similar as for conditions of magnetized and unmagnetized effect for DC plasma. This means that the rate of plasma loss by diffusion decreased for L R, agrees well with the applied of magnetic field展开更多
In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma colu...In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma column, and the radial density profile of negative-ions is measured by Langmuir probes using the modified Bohm criterion. The gas pressure and discharge current dependences of negative-ion density are also measured. It is found that the negative-ion density of 8.0 × 1017 m-3 is obtained around the plasma column at r = 1.0 cm when SF6 pressure is 0.13 Pa and discharge current is 0.50 A. The negative-ion density has radial gradient, and the electron density is much lower in this region.展开更多
In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local suppo...In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.21074137,21104082 and 50930001)the Fund for Creative Research Groups (No.50921062)National Basic Research Program of China (973Program, 2012CB821500)
文摘A single polymer chain in solvent confined in a slit formed by two parallel plates is studied by using molecular dynamics simulation method. The square radii of gyration and diffusion behaviors of polymers are greatly affected by the distance between the two plates, but they do not follow the same way. The chain size decays drastically with increasing h (h is the distance between two plates), until a basin occurs, and a universal h/(Rg)o dependence for polymer chains with different degrees of polymerization can be obtained. While, for the chain's diffusion coefficient, it decays monotonously and there is no such basin-like behavior. Furthermore, we studied the radial distribution function of confined polymer chains to explain the reason why there is a difference for the decay behaviors between dynamic properties and static properties. Besides, we also give the degree of confinement dependence of the static scaling exponent for a single polymer chain. Our work provides an efficient way to estimate the dynamics and static properties of confined polymer chains, and also helps us to understand the behavior of polymer chains under confinement.
基金supported by NSFC grants 41474139,41731068,and 41674164the support from the China Postdoctoral Science Foundation through grant 2019 M650316。
文摘We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.
文摘Experimental and theoretical studies of the radial distribution function of the electron temperature (RDFT) in a low-density plasma and weakly ionized gas for the abnormal glow region are presented. Experimentally, the electron temperatures and densities are measured by a Langmuir probe moved radially from the center to the edge of the cathode electrode for helium gas at different pressures in the low-pressure glow discharge. The comparison of the final experimental data for the radial distribution of electron temperatures and densities for different low pressures ranging from 0.2 to 1.2 torr, with the final proved equation of RDFT confirms that the electron temperatures decrease with increasing product of radial distance and gas pressures, showing a radial decrement dependence of the electron temperature from the center to the edge of the electrode. This is attributed to the increase of the number of electron-atom collisions at higher gas pressures and consequently of the rate of ionization. For the axial distance (L) from the tip of the probe to cathode electrode and the cathode electrode radius (R), a theoretical and experimental comparison for the two conditions L R and L > R, for both cases the produced plasma temperatures decrease and densities increase. It is concluded that the RDFT accurately shows a dramatic decrease for L R by 60% less than RDFT values for L > R similar as for conditions of magnetized and unmagnetized effect for DC plasma. This means that the rate of plasma loss by diffusion decreased for L R, agrees well with the applied of magnetic field
文摘In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma column, and the radial density profile of negative-ions is measured by Langmuir probes using the modified Bohm criterion. The gas pressure and discharge current dependences of negative-ion density are also measured. It is found that the negative-ion density of 8.0 × 1017 m-3 is obtained around the plasma column at r = 1.0 cm when SF6 pressure is 0.13 Pa and discharge current is 0.50 A. The negative-ion density has radial gradient, and the electron density is much lower in this region.
基金Project (No. 10572128) supported by the National Natural ScienceFoundation of China
文摘In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.