In this paper, we introduce the m-Cartan matrix and observe that some properties of the quadratic form associated to the Cartan matrix of an Euclidean diagram can be generalized to the m-Cartan matrix of a McKay quive...In this paper, we introduce the m-Cartan matrix and observe that some properties of the quadratic form associated to the Cartan matrix of an Euclidean diagram can be generalized to the m-Cartan matrix of a McKay quiver. We also describe the McKay quiver for a finite abelian subgroup of a special linear group.展开更多
We extend the ■Hall algebra realization of ■quantum groups arising from quantum symmetric pairs,which establishes an injective homomorphism from the universal ■quantum group of Kac-Moody type to the ■Hall algebra ...We extend the ■Hall algebra realization of ■quantum groups arising from quantum symmetric pairs,which establishes an injective homomorphism from the universal ■quantum group of Kac-Moody type to the ■Hall algebra associated to an arbitrary ■quiver(not necessarily virtually acyclic).This generalizes Lu-Wang’s result.展开更多
Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain sub...Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain subcategory of the monomorphism category S(Gprj-Λ) containing boundary vertices. We describe the shape of such components. It is shown that certain components are linked to the orbits of an auto-equivalence on the stable category Gprj. In particular, for the finite components, we show that under certain mild conditions,their cardinalities are divisible by 3. We see that this three-periodicity phenomenon reoccurs several times in the paper.展开更多
It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of...It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.展开更多
For a classical group G over a field F together with a finite-order automorphism θ that acts compatibly on F, we describe the fixed point subgroup of θ on G and the eigenspaces of θ on the Lie algebra g in terms of...For a classical group G over a field F together with a finite-order automorphism θ that acts compatibly on F, we describe the fixed point subgroup of θ on G and the eigenspaces of θ on the Lie algebra g in terms of cyclic quivers with involution. More precise classification is given when g is a loop Lie algebra, i.e.,when F = C((t)).展开更多
The aim of this paper is to characterize the first graded Hochschild cohomology of a hereditary algebra whose Gabriel quiver is admitted to have oriented cycles. The interesting conclusion we have obtained shows that ...The aim of this paper is to characterize the first graded Hochschild cohomology of a hereditary algebra whose Gabriel quiver is admitted to have oriented cycles. The interesting conclusion we have obtained shows that the standard basis of the first graded Hochschild cohomology depends on the genus of a quiver as a topological object. In this paper, we overcome the limitation of the classical Hochschild cohomology for hereditary algebra where the Gabriel quiver is assumed to be acyclic. As preparation, we first investigate the graded differential operators on a path algebra and the associated graded Lie algebra.展开更多
Aloe dichotoma (Quiver tree) occurs in the arid regions of Namaqualand and Bushman land in South Africa, and in arid regions of southern Namibia. The Quiver trees are not only threatened by agricultural expansion, ove...Aloe dichotoma (Quiver tree) occurs in the arid regions of Namaqualand and Bushman land in South Africa, and in arid regions of southern Namibia. The Quiver trees are not only threatened by agricultural expansion, overgrazing, and mining;but also by climate changes and droughts. Previous studies show that Quiver trees are very sensitive to environmental changes, and do not respond well to extreme hot and dry conditions. This study investigates the current status of the Quiver tree within its existing environment, and also assesses the projected future changes of the Quiver tree habitat under different climatic scenarios. It provided evidence regarding the importance of the study to understanding the climate change impacts on the Quiver tree and its geographical response to climate changes.展开更多
In this paper, we introduce the notion of (*)-serial coalgebras which is a generalization of serial coalgebras. We investigate the properties of (*)-serial coalgebras and their comodules, and obtain sufficient a...In this paper, we introduce the notion of (*)-serial coalgebras which is a generalization of serial coalgebras. We investigate the properties of (*)-serial coalgebras and their comodules, and obtain sufficient and necessary conditions for a basic coalgebra to be (*)-serial.展开更多
Consider the canonical isomorphism between the positive part U+ of the quantum group Uq(g) and the Hall algebra H(Λ),where the semisimple Lie algebra g and the finite-dimensional hereditary algebra Λ share a Dynkin ...Consider the canonical isomorphism between the positive part U+ of the quantum group Uq(g) and the Hall algebra H(Λ),where the semisimple Lie algebra g and the finite-dimensional hereditary algebra Λ share a Dynkin diagram.Chen and Xiao have given two algorithms to decompose the root vectors into linear combinations of monomials of Chevalley generators of U+,respectively induced by the braid group action on the exceptional sequences of Λ-modules and the structure of the Auslander-Reiten quiver of Λ.In this paper,we obtain the corresponding algorithms for the derived Hall algebra DH(Λ),which was introduced by Toen.We show that both algorithms are applicable to the lattice algebra and Heisenberg double in the sense of Kapranov.All the new recursive formulae have the same flavor with the quantum Serre relations.展开更多
For a truncated quiver algebra over a field of an arbitrary characteristic, its Hochschild cohomology is calculated. Moreover, it is shown that its Hochschild cohomology algebra is finitedimensional if and only if its...For a truncated quiver algebra over a field of an arbitrary characteristic, its Hochschild cohomology is calculated. Moreover, it is shown that its Hochschild cohomology algebra is finitedimensional if and only if its global dimension is finite if and only if its quiver has no oriented cycles.展开更多
In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually s...In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually simple forms in the sense of E. L. Green and E. N. Morcos. We also give the definition of self-dual weak Hopf quiver and apply these types of quivers to classify the finite- dimensional self-dual semilattice graded weak Hopf algebras. Finally, we prove partially the conjecture given by N. Andruskiewitsch and H.-J. Schneider in the case of finite-dimensional pointed semilattice graded weak Hopf algebra H when grH is self-dual.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10671061)theResearch Foundation for Doctor Programme (Grant No. 200505042004)
文摘In this paper, we introduce the m-Cartan matrix and observe that some properties of the quadratic form associated to the Cartan matrix of an Euclidean diagram can be generalized to the m-Cartan matrix of a McKay quiver. We also describe the McKay quiver for a finite abelian subgroup of a special linear group.
文摘We extend the ■Hall algebra realization of ■quantum groups arising from quantum symmetric pairs,which establishes an injective homomorphism from the universal ■quantum group of Kac-Moody type to the ■Hall algebra associated to an arbitrary ■quiver(not necessarily virtually acyclic).This generalizes Lu-Wang’s result.
基金supported by National Natural Science Foundation of China (Grant No. 12101316)。
文摘Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain subcategory of the monomorphism category S(Gprj-Λ) containing boundary vertices. We describe the shape of such components. It is shown that certain components are linked to the orbits of an auto-equivalence on the stable category Gprj. In particular, for the finite components, we show that under certain mild conditions,their cardinalities are divisible by 3. We see that this three-periodicity phenomenon reoccurs several times in the paper.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771070)partly supported by the NSF of Hainan Province (Grant No. 19702)by the Natural Science Foundation of Education Department of Hainan Province
文摘It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.
文摘For a classical group G over a field F together with a finite-order automorphism θ that acts compatibly on F, we describe the fixed point subgroup of θ on G and the eigenspaces of θ on the Lie algebra g in terms of cyclic quivers with involution. More precise classification is given when g is a loop Lie algebra, i.e.,when F = C((t)).
基金Supported by the National Natural Science Foundation of China(Grant Nos.10871170 and 11171296)the Zhejiang Provincial Natural Science Foundation of China(Grant No.D7080064)
文摘The aim of this paper is to characterize the first graded Hochschild cohomology of a hereditary algebra whose Gabriel quiver is admitted to have oriented cycles. The interesting conclusion we have obtained shows that the standard basis of the first graded Hochschild cohomology depends on the genus of a quiver as a topological object. In this paper, we overcome the limitation of the classical Hochschild cohomology for hereditary algebra where the Gabriel quiver is assumed to be acyclic. As preparation, we first investigate the graded differential operators on a path algebra and the associated graded Lie algebra.
文摘Aloe dichotoma (Quiver tree) occurs in the arid regions of Namaqualand and Bushman land in South Africa, and in arid regions of southern Namibia. The Quiver trees are not only threatened by agricultural expansion, overgrazing, and mining;but also by climate changes and droughts. Previous studies show that Quiver trees are very sensitive to environmental changes, and do not respond well to extreme hot and dry conditions. This study investigates the current status of the Quiver tree within its existing environment, and also assesses the projected future changes of the Quiver tree habitat under different climatic scenarios. It provided evidence regarding the importance of the study to understanding the climate change impacts on the Quiver tree and its geographical response to climate changes.
文摘In this paper, we introduce the notion of (*)-serial coalgebras which is a generalization of serial coalgebras. We investigate the properties of (*)-serial coalgebras and their comodules, and obtain sufficient and necessary conditions for a basic coalgebra to be (*)-serial.
基金supported by National Natural Science Foundation of China(Grant No.10631010)National Key Basic Research Project of China (Grant No.2006CB805905)
文摘Consider the canonical isomorphism between the positive part U+ of the quantum group Uq(g) and the Hall algebra H(Λ),where the semisimple Lie algebra g and the finite-dimensional hereditary algebra Λ share a Dynkin diagram.Chen and Xiao have given two algorithms to decompose the root vectors into linear combinations of monomials of Chevalley generators of U+,respectively induced by the braid group action on the exceptional sequences of Λ-modules and the structure of the Auslander-Reiten quiver of Λ.In this paper,we obtain the corresponding algorithms for the derived Hall algebra DH(Λ),which was introduced by Toen.We show that both algorithms are applicable to the lattice algebra and Heisenberg double in the sense of Kapranov.All the new recursive formulae have the same flavor with the quantum Serre relations.
基金the National Natural Science Foundation of China (Grant Nob. 10426014, 10501010 and 10201004)Important Fund of Hubei Provincial Department of Education (Grant No.D200510005)
文摘For a truncated quiver algebra over a field of an arbitrary characteristic, its Hochschild cohomology is calculated. Moreover, it is shown that its Hochschild cohomology algebra is finitedimensional if and only if its global dimension is finite if and only if its quiver has no oriented cycles.
基金the Program for New Century Excellent Talents in University (No 04-0522)the National Natural Science Foundation of China (No.10571153)
文摘In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually simple forms in the sense of E. L. Green and E. N. Morcos. We also give the definition of self-dual weak Hopf quiver and apply these types of quivers to classify the finite- dimensional self-dual semilattice graded weak Hopf algebras. Finally, we prove partially the conjecture given by N. Andruskiewitsch and H.-J. Schneider in the case of finite-dimensional pointed semilattice graded weak Hopf algebra H when grH is self-dual.