Let H_F be the generalized quaternion division algebra over a field F with charF≠2. In this paper, the ad joint matrix of any n×n matrix over H_F[λ] is defined and its properties is discussed. By using the adjo...Let H_F be the generalized quaternion division algebra over a field F with charF≠2. In this paper, the ad joint matrix of any n×n matrix over H_F[λ] is defined and its properties is discussed. By using the adjoint matrix and the method of representation matrix, this paper obtains several necessary and sufficieut conditions for the existence of a solution or a unique solution to the matrix equation sum from n=i to k A^iXB_i=E over H_F, and gives some explicit formulas of solutions.展开更多
This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
This paper first studies the solution of a complex matrix equation X - AXB = C, obtains an explicit solution of the equation by means of characteristic polynomial, and then studies the quaternion matrix equation X - A...This paper first studies the solution of a complex matrix equation X - AXB = C, obtains an explicit solution of the equation by means of characteristic polynomial, and then studies the quaternion matrix equation X - A X B = C, characterizes the existence of a solution to the matrix equation, and derives closed-form solutions of the matrix equation in explicit forms by means of real representations of quaternion matrices. This paper also gives an application to the complex matrix equation X - AXB =C.展开更多
This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem...This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem. This paper also suggests sufficient and necessary conditions for the existence and uniqueness of solutions and explicit forms of the solutions of the equation.展开更多
We in this paper give necessary and sufficient conditions for the existence of the general solution to the system of matrix equations A1X1 = C1, AXiB1 + X2B2 = C3, A2X2 + A3X3B= C2 and X3B3 = C4 over the quaternion ...We in this paper give necessary and sufficient conditions for the existence of the general solution to the system of matrix equations A1X1 = C1, AXiB1 + X2B2 = C3, A2X2 + A3X3B= C2 and X3B3 = C4 over the quaternion algebra H, and present an expression of the general solution to this system when it is solvable. Using the results, we give some necessary and sufficient conditions for the system of matrix equations AX = C, XB = C over H to have a reducible solution as well as the representation of such solution to the system when the consistency conditions are met. A numerical example is also given to illustrate our results. As another application, we give the necessary and sufficient conditions for two associated electronic networks to have the same branch current and branch voltage and give the expressions of the same branch current and branch voltage when the conditions are satisfied.展开更多
基金the National Natural Science Foundation of China and Hunan
文摘Let H_F be the generalized quaternion division algebra over a field F with charF≠2. In this paper, the ad joint matrix of any n×n matrix over H_F[λ] is defined and its properties is discussed. By using the adjoint matrix and the method of representation matrix, this paper obtains several necessary and sufficieut conditions for the existence of a solution or a unique solution to the matrix equation sum from n=i to k A^iXB_i=E over H_F, and gives some explicit formulas of solutions.
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
基金Supported by the National Natural Science Foundation of China (10371044)Shanghai Priority Academic Discipline Foundation, Shanghai, China
文摘This paper first studies the solution of a complex matrix equation X - AXB = C, obtains an explicit solution of the equation by means of characteristic polynomial, and then studies the quaternion matrix equation X - A X B = C, characterizes the existence of a solution to the matrix equation, and derives closed-form solutions of the matrix equation in explicit forms by means of real representations of quaternion matrices. This paper also gives an application to the complex matrix equation X - AXB =C.
文摘This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem. This paper also suggests sufficient and necessary conditions for the existence and uniqueness of solutions and explicit forms of the solutions of the equation.
基金This research was supported by the National Natural Science Foundation of China (11571220), the Science and Technology Foundation of Guizhou Province (LKB [2013] 11), the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 312386-2015), and the Macao Science and Technology Development Fund (003/2015/A1).
文摘We in this paper give necessary and sufficient conditions for the existence of the general solution to the system of matrix equations A1X1 = C1, AXiB1 + X2B2 = C3, A2X2 + A3X3B= C2 and X3B3 = C4 over the quaternion algebra H, and present an expression of the general solution to this system when it is solvable. Using the results, we give some necessary and sufficient conditions for the system of matrix equations AX = C, XB = C over H to have a reducible solution as well as the representation of such solution to the system when the consistency conditions are met. A numerical example is also given to illustrate our results. As another application, we give the necessary and sufficient conditions for two associated electronic networks to have the same branch current and branch voltage and give the expressions of the same branch current and branch voltage when the conditions are satisfied.