A state-to-state dynamics analysis for the Li+HF (v = 0, j = 0)→LiF (v’, j’)+H collision reaction has been performed through quasiclassical trajectory (QCT) calculations. It is found that the differential c...A state-to-state dynamics analysis for the Li+HF (v = 0, j = 0)→LiF (v’, j’)+H collision reaction has been performed through quasiclassical trajectory (QCT) calculations. It is found that the differential cross section (DCS) of the LiF products from the title reaction is preferentially backward scattering for v’=0, yet forward scattering for v’=1 and 2. For v’=3, the DCS exhibits forward, backward, and sideways scatterings. The variation of the internuclear distances and angles along the propagation time reveals that more than 99.08% of reaction trajectories undergo the direct reaction mechanism. The values of the polarization parameters a1-{1} and a0{2} demonstrate that the product rotational angular moment j’ is not only aligned perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. These product polarization results agree well with the recent quantum mechanical studies. The mechanism of these results was proposed and discussed in detail.展开更多
Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector corr...Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.展开更多
This paper studies the influence of the reagent vibration on the reaction O(1D)+HF→HO+F by using a quasiclassical trajectory method on the new ab initio 1A' ground singlet potential energy surface (Gomez-Carras...This paper studies the influence of the reagent vibration on the reaction O(1D)+HF→HO+F by using a quasiclassical trajectory method on the new ab initio 1A' ground singlet potential energy surface (Gomez-Carrasco et al 2007 Chem. Phys. Lett. 435 188 193). The product angular distributions which reflect the vector correlation are calculated. Four polarization-dependent differential cross sections (PDDCSs) which are sensitive to many photoinitiated bimolecular reaction experiments are presented in the center of the mass frame, respectively. The differential cross section indicates that the OH product mainly tends to the forward scattering, and other PDDCSs are also influenced by the vibration levels of HF.展开更多
A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision ...A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 〈 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.展开更多
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The...The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.展开更多
We have carried out a quasi-classical trajectory calculation for the reaction ofNe + H2+ (v = 0, j = 1) → NeH+ + H on the ground state (12AI) using the LZHH potential energy surface constructed by L/i et al. ...We have carried out a quasi-classical trajectory calculation for the reaction ofNe + H2+ (v = 0, j = 1) → NeH+ + H on the ground state (12AI) using the LZHH potential energy surface constructed by L/i et al. [Lu S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303]. Differential cross sections at many collision energies indicate that the reaction is dominated by forward-scattering. In addition, the Nell+ product shows rotationally hot and vibrationally cold distributions. Stereodynamical results indicate that the products are strongly polarized in the direction perpendicular to the scattering plane and that the products rotate mainly in planes parallel to the scattering plane.展开更多
Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment f...Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment factor 【P2(j′·k)】 as a function of collision energy and the four polarization dependent generalized differential cross sections have been calculated in the center-of-mass (CM) frame, separately. The distribution P(θr) of the angle between k and j′, the distribution P(θr) of dihedral angle denoting k-k′-j′ correlation, and the angular distribution P(θr, Φr) of product rotational vectors in the form of polar plots are calculated as well. The effect of Heavy-Light-Heavy (HLH) mass combination and atom F’s relatively strong absorbability to charges on the alignment and the orientation of product molecule HF rotational angular momentum vectors j′ is revealed.展开更多
Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, Dt+ DS(v = 0, j = 0) → D'D + S on a new LZHH potential energy surface (PES) of the adiabatic 3A'' electronic s...Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, Dt+ DS(v = 0, j = 0) → D'D + S on a new LZHH potential energy surface (PES) of the adiabatic 3A'' electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), P(φr), and P(θr,φr), together with the four commonly used polarization-dependent differential cross sections ((2 π/σ) ( d σ00 / d ω1), (2π/σ) (d σ20 / d ω1), (2π/σ)(dσ22+/dω1), (2π/σ)(dσ21-/dω1)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.展开更多
Quasi-classical trajectory (QCT) studies on the stereodynamics of H + BrO → O+ HBr reaction have been performed on the X1A' state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phy...Quasi-classical trajectory (QCT) studies on the stereodynamics of H + BrO → O+ HBr reaction have been performed on the X1A' state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections (PDDCSs), (2π/σ)(dσ 00/d ω) (PDDCSoo) and (2π/σ)(dσ20/doh) (PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P (Фr), are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.展开更多
Scalar properties and vector correlations of the reactions of O+H2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D2 -+OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via the quasi-classical-traj...Scalar properties and vector correlations of the reactions of O+H2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D2 -+OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via the quasi-classical-trajectory (QCT) method based on a BMS1 potential energy surface (PES). The generalized polarization-dependent differential cross section and the distributions of the dihedral angle at the collision energy of 34.6 kacl/mole are presented. The calculated results indicate that both the reagent rotational angular momentum and the mass factor have a significant influence on the scalar properties and vector correlations of the title reactions.展开更多
Quasi-classical trajectory(QCT) calculations have been carried out to study the generalized polarization dependent differentialcross sections(PDDCSs) for the reactions H + LiH^+(v = 0,j = 0)→H_2 + Li^+ and H^+ + LiH(...Quasi-classical trajectory(QCT) calculations have been carried out to study the generalized polarization dependent differentialcross sections(PDDCSs) for the reactions H + LiH^+(v = 0,j = 0)→H_2 + Li^+ and H^+ + LiH(v = 0,j = 0)→H_2^+ + Li occurring onthe two lowest-lying electronic states of the LiH_2^+ system,using the ab initio potential energy surfaces(PESs) of Martinazzo et al.[3].Four PDDCSs,i.e.,(2π/σ)(dσ_(00)/dω_t),(2π/σ)(dσ_(20)/dω_t),(2π/σ)(dσ_(22+)/dω_t),(2π/σ)(dσ_(21-)/dω_t) have been discussed ...展开更多
Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT)...Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P(0r), P(~r), and P(Or, Cr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j' is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.展开更多
Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences ...Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences between the reaction probabilities for J=0, integral cross sections for J≠0, branch ratios of the product and internuclear distances as well as product rotational alignments between the title reactions axe found. These differences are attributed mainly to the different reduced masses of the reactants and the different zero-point energies (ZPEs) of the transition state.展开更多
Calculations on the dynamics of the reaction O( 1 D) + HBr --+ OH Br are performed on the ab initio potential energy surfaces (PESs) of the ground state given by Peterson [Peterson K A J. Chem. Phys. 113 4598 ...Calculations on the dynamics of the reaction O( 1 D) + HBr --+ OH Br are performed on the ab initio potential energy surfaces (PESs) of the ground state given by Peterson [Peterson K A J. Chem. Phys. 113 4598 (2000)] using the quasi classical trajectory (QCT) method. The product distribution of the dihedral angle, P (φr), and that of the angle between k and j, P (Or), are presented in three dimensions. Moreover, we also investigate the reagent vibrational excitation effects on the two polarization-dependent generalized differential cross sections (PDDCS), PDDCS00 and PDDCS20, in the center- of-mass frame. The results indicate that the vector properties are sensitive to the reagent vibrational quantum number.展开更多
The vector correlations between products and reagents for the reactions Ne+H2+, Ne+D2+, and Ne+T2+ are calculated by means of the quasi-classical trajectory method on a new potential energy surface constructed b...The vector correlations between products and reagents for the reactions Ne+H2+, Ne+D2+, and Ne+T2+ are calculated by means of the quasi-classical trajectory method on a new potential energy surface constructed by Lfi et al, [J. Chem. Phys. 2010 132, 014303]. The polarization-dependent differential cross-sections (27π/σ)(dσ00/dωt), (2π/σ)(dσ20/dwt), (27π/σ)(dσ22+/dwt), and (2π/σ)(dσ21-/dwt), and the distributions of P(θr), P(φ), and P(θr, Cr) are calculated. The isotopic effect, which is associated with the difference in mass factor among the three reactions, is revealed.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2019YFB1704204)the National Natural Science Foundation of China (Grant No.12002348).
基金Project supported by the National Natural Science Foundation of China(Grant No.21003062)the Foundation for Outstanding Yong Scientist of Shandong Province,China(Grant No.BS2012SF002)
文摘A state-to-state dynamics analysis for the Li+HF (v = 0, j = 0)→LiF (v’, j’)+H collision reaction has been performed through quasiclassical trajectory (QCT) calculations. It is found that the differential cross section (DCS) of the LiF products from the title reaction is preferentially backward scattering for v’=0, yet forward scattering for v’=1 and 2. For v’=3, the DCS exhibits forward, backward, and sideways scatterings. The variation of the internuclear distances and angles along the propagation time reveals that more than 99.08% of reaction trajectories undergo the direct reaction mechanism. The values of the polarization parameters a1-{1} and a0{2} demonstrate that the product rotational angular moment j’ is not only aligned perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. These product polarization results agree well with the recent quantum mechanical studies. The mechanism of these results was proposed and discussed in detail.
基金supported by the National Natural Science Foundation of China (Grant No.11074103)the Discipline ConstructionFund of Ludong University,China
文摘Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574083)the Natural Science Foundation of Shandong Province of China (Grant No Y2006A23)partially by the National Basic Research Program of China (GrantNo 2006CB806000)
文摘This paper studies the influence of the reagent vibration on the reaction O(1D)+HF→HO+F by using a quasiclassical trajectory method on the new ab initio 1A' ground singlet potential energy surface (Gomez-Carrasco et al 2007 Chem. Phys. Lett. 435 188 193). The product angular distributions which reflect the vector correlation are calculated. Four polarization-dependent differential cross sections (PDDCSs) which are sensitive to many photoinitiated bimolecular reaction experiments are presented in the center of the mass frame, respectively. The differential cross section indicates that the OH product mainly tends to the forward scattering, and other PDDCSs are also influenced by the vibration levels of HF.
基金supported by the Jilin University,China(Grant No.419080106440)the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor(ITER)(Grant No.2010GB104003)the National Natural Science Foundation of China(Grant No.10974069)
文摘A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 〈 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.
基金Project supported by the National Natural Science Foundation of China(Grant No.11004107)the Scientific Research Innovation Projects of Jiangsu Province for University Graduate Students,China(Grant No.CXZZ13 0201)
文摘The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.
基金Project supported by the National Natural Science Foundation of China (Grant No.21073110)the Independent Innovation Foundation of Shandong University of China (Grant No.10000059614011)
文摘We have carried out a quasi-classical trajectory calculation for the reaction ofNe + H2+ (v = 0, j = 1) → NeH+ + H on the ground state (12AI) using the LZHH potential energy surface constructed by L/i et al. [Lu S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303]. Differential cross sections at many collision energies indicate that the reaction is dominated by forward-scattering. In addition, the Nell+ product shows rotationally hot and vibrationally cold distributions. Stereodynamical results indicate that the products are strongly polarized in the direction perpendicular to the scattering plane and that the products rotate mainly in planes parallel to the scattering plane.
基金supported by the National Natural Science Founda-tion of China (Grant No. 10574083)the Natural Science Foundation of Shandong Province of China (Grant No. Y2006A23)Partial financial support from the National Basic Research Program of China is also gratefully acknowledged (Grant No. 2006CB806000)
文摘Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment factor 【P2(j′·k)】 as a function of collision energy and the four polarization dependent generalized differential cross sections have been calculated in the center-of-mass (CM) frame, separately. The distribution P(θr) of the angle between k and j′, the distribution P(θr) of dihedral angle denoting k-k′-j′ correlation, and the angular distribution P(θr, Φr) of product rotational vectors in the form of polar plots are calculated as well. The effect of Heavy-Light-Heavy (HLH) mass combination and atom F’s relatively strong absorbability to charges on the alignment and the orientation of product molecule HF rotational angular momentum vectors j′ is revealed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 41201336 and 41001250)the Fundamental Research Funds for the Central Universities of China (Grant No. 13CX02018A)
文摘Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, Dt+ DS(v = 0, j = 0) → D'D + S on a new LZHH potential energy surface (PES) of the adiabatic 3A'' electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), P(φr), and P(θr,φr), together with the four commonly used polarization-dependent differential cross sections ((2 π/σ) ( d σ00 / d ω1), (2π/σ) (d σ20 / d ω1), (2π/σ)(dσ22+/dω1), (2π/σ)(dσ21-/dω1)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.
基金Project supported by the Science Fund from Jilin University,China(Grant No.419080106440)the Chinese National Fusion Project for ITER(Grant No.2010GB104003)the National Natural Science Foundation of China(Grant No.10974069)
文摘Quasi-classical trajectory (QCT) studies on the stereodynamics of H + BrO → O+ HBr reaction have been performed on the X1A' state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections (PDDCSs), (2π/σ)(dσ 00/d ω) (PDDCSoo) and (2π/σ)(dσ20/doh) (PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P (Фr), are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61127012 and 60977063)the Scientific and Technical Innovation and Troop Construction Projects of Henan Province, China (Grant No.124200510013)
文摘Scalar properties and vector correlations of the reactions of O+H2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D2 -+OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via the quasi-classical-trajectory (QCT) method based on a BMS1 potential energy surface (PES). The generalized polarization-dependent differential cross section and the distributions of the dihedral angle at the collision energy of 34.6 kacl/mole are presented. The calculated results indicate that both the reagent rotational angular momentum and the mass factor have a significant influence on the scalar properties and vector correlations of the title reactions.
基金supported by the National Natural Science Foundation of China(No. 10674114)carried out in the Shuguang Super Computer Center(SSCC) of Ludong University
文摘Quasi-classical trajectory(QCT) calculations have been carried out to study the generalized polarization dependent differentialcross sections(PDDCSs) for the reactions H + LiH^+(v = 0,j = 0)→H_2 + Li^+ and H^+ + LiH(v = 0,j = 0)→H_2^+ + Li occurring onthe two lowest-lying electronic states of the LiH_2^+ system,using the ab initio potential energy surfaces(PESs) of Martinazzo et al.[3].Four PDDCSs,i.e.,(2π/σ)(dσ_(00)/dω_t),(2π/σ)(dσ_(20)/dω_t),(2π/σ)(dσ_(22+)/dω_t),(2π/σ)(dσ_(21-)/dω_t) have been discussed ...
基金Project supported by the National Natural Science Foundation of China (Grant No. 21003062)
文摘Stereodynamics for the reaction H+LiF(v = 0, j = 0) → HF+Li and its isotopic variants on the ground-state (12A') potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P(0r), P(~r), and P(Or, Cr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j' is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574083)the Natural Science Foundation of Shandong Province of China (Grant No.Y2006A23)+1 种基金the National Basic Research Program of China (Grant No.2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)
文摘Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D)+OF reactions on the adiabatic potential energy surface (PES) of the 1^3A″ triplet state. Obvious differences between the reaction probabilities for J=0, integral cross sections for J≠0, branch ratios of the product and internuclear distances as well as product rotational alignments between the title reactions axe found. These differences are attributed mainly to the different reduced masses of the reactants and the different zero-point energies (ZPEs) of the transition state.
基金supported by the Natural Science Fund from Jilin University,China(Grant No.419080106440)the Chinese National Fusion Project for ITER(GrantNo.2010GB104003)the National Natural Science Foundation of China(Grant No.10974069)
文摘Calculations on the dynamics of the reaction O( 1 D) + HBr --+ OH Br are performed on the ab initio potential energy surfaces (PESs) of the ground state given by Peterson [Peterson K A J. Chem. Phys. 113 4598 (2000)] using the quasi classical trajectory (QCT) method. The product distribution of the dihedral angle, P (φr), and that of the angle between k and j, P (Or), are presented in three dimensions. Moreover, we also investigate the reagent vibrational excitation effects on the two polarization-dependent generalized differential cross sections (PDDCS), PDDCS00 and PDDCS20, in the center- of-mass frame. The results indicate that the vector properties are sensitive to the reagent vibrational quantum number.
基金supported by the National Natural Science Foundation of China (Grant Nos. NSFC-11174117 and NSFC-10974078)
文摘The vector correlations between products and reagents for the reactions Ne+H2+, Ne+D2+, and Ne+T2+ are calculated by means of the quasi-classical trajectory method on a new potential energy surface constructed by Lfi et al, [J. Chem. Phys. 2010 132, 014303]. The polarization-dependent differential cross-sections (27π/σ)(dσ00/dωt), (2π/σ)(dσ20/dwt), (27π/σ)(dσ22+/dwt), and (2π/σ)(dσ21-/dwt), and the distributions of P(θr), P(φ), and P(θr, Cr) are calculated. The isotopic effect, which is associated with the difference in mass factor among the three reactions, is revealed.