在(Quantum information Processing,2017,16,106),对于多体复合量子系统量子态,基于密度算子的迭代重排给出了多体量子态完全可分的一个必要条件。将其推广到了多体量子态相对于k体分划的情形,首先讨论了多体量子态相对于k体分划的迭...在(Quantum information Processing,2017,16,106),对于多体复合量子系统量子态,基于密度算子的迭代重排给出了多体量子态完全可分的一个必要条件。将其推广到了多体量子态相对于k体分划的情形,首先讨论了多体量子态相对于k体分划的迭代重排的定义及性质,然后基于此迭代重排的定义,给出了多体量子态k可分的一个必要条件,并通过一个例子说明该判据是有效的,其可以探测多体k不可分纠缠态。展开更多
The Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in t...The Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions, unambiguous definition of states, observables, measurements, Maxwell equations solution in that terms, bring into reality a kind of physical fields, states in the suggested theory, spreading through the whole three-dimensional space and values of the time parameter. The fields can be modified instantly in all points of space and time values, thus eliminating the concept of cause and effect and perceiving of one-directional time.展开更多
设Hm 是维数为m的复希尔伯特空间,S(Hm ■Hn )是作用在复双体希尔伯特空间H m ■H n 上的所有量子态的全体, Ssep (Hm■Hn)是所有可分量子态做成的S(Hm■Hn)的凸子集,Ф: S(Hm■Hn ) S(Hm■Hn )是量子信道且Ф(S sep■(H m■ H n ))=S s...设Hm 是维数为m的复希尔伯特空间,S(Hm ■Hn )是作用在复双体希尔伯特空间H m ■H n 上的所有量子态的全体, Ssep (Hm■Hn)是所有可分量子态做成的S(Hm■Hn)的凸子集,Ф: S(Hm■Hn ) S(Hm■Hn )是量子信道且Ф(S sep■(H m■ H n ))=S sep (H m■ H n ),那么Ф保持 von Neumann 熵S(t ρ+(1-t)σ)=S(tФ(ρ)+(1-t)Ф(σ)),■ t∈[0, 1],■ρ,σ∈S sep (H m■H n )当且仅当在H m ,H n 上分别存在酉算子或共轭酉算子 U m , V n ,使得Ф(ρ)=( U m■ V n )ρ( U m■ V n )^*,■ρ∈S sep (H m ■H n ).展开更多
文摘在(Quantum information Processing,2017,16,106),对于多体复合量子系统量子态,基于密度算子的迭代重排给出了多体量子态完全可分的一个必要条件。将其推广到了多体量子态相对于k体分划的情形,首先讨论了多体量子态相对于k体分划的迭代重排的定义及性质,然后基于此迭代重排的定义,给出了多体量子态k可分的一个必要条件,并通过一个例子说明该判据是有效的,其可以探测多体k不可分纠缠态。
文摘The Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions, unambiguous definition of states, observables, measurements, Maxwell equations solution in that terms, bring into reality a kind of physical fields, states in the suggested theory, spreading through the whole three-dimensional space and values of the time parameter. The fields can be modified instantly in all points of space and time values, thus eliminating the concept of cause and effect and perceiving of one-directional time.
文摘设Hm 是维数为m的复希尔伯特空间,S(Hm ■Hn )是作用在复双体希尔伯特空间H m ■H n 上的所有量子态的全体, Ssep (Hm■Hn)是所有可分量子态做成的S(Hm■Hn)的凸子集,Ф: S(Hm■Hn ) S(Hm■Hn )是量子信道且Ф(S sep■(H m■ H n ))=S sep (H m■ H n ),那么Ф保持 von Neumann 熵S(t ρ+(1-t)σ)=S(tФ(ρ)+(1-t)Ф(σ)),■ t∈[0, 1],■ρ,σ∈S sep (H m■H n )当且仅当在H m ,H n 上分别存在酉算子或共轭酉算子 U m , V n ,使得Ф(ρ)=( U m■ V n )ρ( U m■ V n )^*,■ρ∈S sep (H m ■H n ).