Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the...Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the magnetic susceptibility differences of various compounds including deoxygenated blood, blood products, iron and calcium, thus enabling a new source of contrast in MR. In this review, we illustrate its basic clinical applications in neuroimaging. SWI is based on a fully velocity-compensated, high-resolution, three dimensional gradientecho sequence using magnitude and phase images either separately or in combination with each other, in order to characterize brain tissue. SWI is particularly useful in the setting of trauma and acute neurologic presentations suggestive of stroke, but can also characterize occult low-flow vascular malformations, cerebral microbleeds, intracranial calcifications, neurodegenerative diseases and brain tumors. Furthermore, advanced MRI post-processing technique with quantitative susceptibility mapping, enables detailed anatomical differentiation based on quantification of brain iron from SWI raw data.展开更多
Seed vigor is an index of seed quality that is used to describe the rapid and uniform germination and the establish- ment of strong seedlings in any environmental conditions. Strong seed vigor in low-temperature germi...Seed vigor is an index of seed quality that is used to describe the rapid and uniform germination and the establish- ment of strong seedlings in any environmental conditions. Strong seed vigor in low-temperature germination conditions is particularly important in direct-sowing rice production systems. However, seed vigor has not been selected as an important breeding trait in traditional breeding programs due to its quantitative inherence. In this study, we identified and mapped eight quantitative trait loci (QTLs) for seed vigor by using a recombinant inbred population from a cross between rice (Oryza sativa L. ssp. indica) cultivars ZS97 and MH63. Conditional QTL analysis identified qSV-1, qSV-Sb, qSV-6a, qSV- 6b, and qSV-11 influenced seedling establishment and that qSV- 5a, qSV-Sc, and qSV-8 influenced only germination. Of these, qSV-1, qSV-Sb, qSV-6a, qSV-6b, and qSV-8 were low-tempera- ture-specific QTLs. Two major-effective QTLs, qSV-1, and qSV-5cwere narrowed down to 1.13-Mbp and 4oo-kbp genomic regions, respectively. The results provide tightly linked DNA markers for the marker-assistant pyramiding of multiple positive alleles for increased low-temperature germination seed vigor in both normal and environments.展开更多
文摘Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the magnetic susceptibility differences of various compounds including deoxygenated blood, blood products, iron and calcium, thus enabling a new source of contrast in MR. In this review, we illustrate its basic clinical applications in neuroimaging. SWI is based on a fully velocity-compensated, high-resolution, three dimensional gradientecho sequence using magnitude and phase images either separately or in combination with each other, in order to characterize brain tissue. SWI is particularly useful in the setting of trauma and acute neurologic presentations suggestive of stroke, but can also characterize occult low-flow vascular malformations, cerebral microbleeds, intracranial calcifications, neurodegenerative diseases and brain tumors. Furthermore, advanced MRI post-processing technique with quantitative susceptibility mapping, enables detailed anatomical differentiation based on quantification of brain iron from SWI raw data.
基金supported in part by the National High Technology Research and Development Program of China (2012AA10A304)
文摘Seed vigor is an index of seed quality that is used to describe the rapid and uniform germination and the establish- ment of strong seedlings in any environmental conditions. Strong seed vigor in low-temperature germination conditions is particularly important in direct-sowing rice production systems. However, seed vigor has not been selected as an important breeding trait in traditional breeding programs due to its quantitative inherence. In this study, we identified and mapped eight quantitative trait loci (QTLs) for seed vigor by using a recombinant inbred population from a cross between rice (Oryza sativa L. ssp. indica) cultivars ZS97 and MH63. Conditional QTL analysis identified qSV-1, qSV-Sb, qSV-6a, qSV- 6b, and qSV-11 influenced seedling establishment and that qSV- 5a, qSV-Sc, and qSV-8 influenced only germination. Of these, qSV-1, qSV-Sb, qSV-6a, qSV-6b, and qSV-8 were low-tempera- ture-specific QTLs. Two major-effective QTLs, qSV-1, and qSV-5cwere narrowed down to 1.13-Mbp and 4oo-kbp genomic regions, respectively. The results provide tightly linked DNA markers for the marker-assistant pyramiding of multiple positive alleles for increased low-temperature germination seed vigor in both normal and environments.