期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Advances in the study of uncertainty quantification of large-scale hydrological modeling system 被引量:21
1
作者 SONG Xiaomeng ZHAN Chesheng +1 位作者 KONG Fanzhe XIA Jun 《Journal of Geographical Sciences》 SCIE CSCD 2011年第5期801-819,共19页
The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex s... The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex system.However,there have not been effective methods for the model reliability and uncertainty analysis due to its complexity and difficulty.The uncertainties in hydrological modeling come from four important aspects:uncertainties in input data and parameters,uncertainties in model structure,uncertainties in analysis method and the initial and boundary conditions.This paper systematically reviewed the recent advances in the study of the uncertainty analysis approaches in the large-scale complex hydrological model on the basis of uncertainty sources.Also,the shortcomings and insufficiencies in the uncertainty analysis for complex hydrological models are pointed out.And then a new uncertainty quantification platform PSUADE and its uncertainty quantification methods were introduced,which will be a powerful tool and platform for uncertainty analysis of large-scale complex hydrological models.Finally,some future perspectives on uncertainty quantification are put forward. 展开更多
关键词 uncertainty quantification hydrological model PSUADE land-atmosphere coupling model large scale
原文传递
CFD不确定度量化方法研究综述 被引量:13
2
作者 陈鑫 王刚 +1 位作者 叶正寅 吴晓军 《空气动力学学报》 CSCD 北大核心 2021年第4期1-13,共13页
随着计算流体力学(CFD)算法和软件的不断发展和完善,CFD数值模拟已经在涉及流体力学的各个领域发挥着日益重要的作用。不确定性因素在CFD计算过程中普遍存在,并且会对数值模拟结果造成影响。发展CFD不确定度量化方法,既能满足工程实践中... 随着计算流体力学(CFD)算法和软件的不断发展和完善,CFD数值模拟已经在涉及流体力学的各个领域发挥着日益重要的作用。不确定性因素在CFD计算过程中普遍存在,并且会对数值模拟结果造成影响。发展CFD不确定度量化方法,既能满足工程实践中对CFD可信度评估的需求,同时也能够支撑飞行器的精细化设计。本文旨在总结不确定度量化方法及其在CFD领域中的发展与应用。首先介绍CFD计算中的不确定性来源,以及不确定性的表现形式—随机不确定性和认知不确定性。然后按照不确定性的表现形式介绍对应的不确定度量化方法。最后介绍不确定度量化方法在CFD计算中的发展与应用,并且给出进一步开展不确定度量化工作的建议。 展开更多
关键词 不确定度量化 随机不确定性 认知不确定性 混合不确定性 CFD可信度评估 CFD不确定性来源
下载PDF
多状态影响下基于Bi‑LSTM网络的锂电池剩余寿命预测方法 被引量:14
3
作者 张浩 胡昌华 +2 位作者 杜党波 裴洪 张建勋 《电子学报》 EI CAS CSCD 北大核心 2022年第3期619-624,共6页
现有基于深度学习的锂电池剩余寿命(Remaining Useful Life,RUL)预测方法中,锂电池多个内部状态所蕴含的寿命信息未得到充分考虑.鉴于此,提出了一种融合电池容量、阻抗与温度三个内部状态的RUL预测模型.首先,引入双向长短时记忆(Bi‑dire... 现有基于深度学习的锂电池剩余寿命(Remaining Useful Life,RUL)预测方法中,锂电池多个内部状态所蕴含的寿命信息未得到充分考虑.鉴于此,提出了一种融合电池容量、阻抗与温度三个内部状态的RUL预测模型.首先,引入双向长短时记忆(Bi‑directional Long Short‑Term Memory,Bi‑LSTM)网络学习三种状态数据的时间相关性.其次,利用dropout技术与Bayesian变分推断技术间的等价性实现了RUL预测结果的不确定性量化,得到了预测结果的95%置信区间与概率密度分布(Probability Density Function,PDF),并分析了不同dropout率对预测不确定性的影响.最后,通过四种不同的深度学习模型框架与两种内部状态输入方案的对比实验,验证了本文方法的有效性. 展开更多
关键词 深度学习 剩余寿命预测 Bi‑LSTM网络 Bayesian变分推断技术 dropout技术 不确定性量化
下载PDF
数字PCR测定DNA含量及测量结果不确定度评定 被引量:11
4
作者 柳方方 张玲 +4 位作者 王晶 陈大舟 臧超 于笑波 秦培勇 《化学分析计量》 CAS 2013年第1期18-22,共5页
数字PCR是一项不依赖校准物的DNA绝对定量技术,将含有DNA模板的反应溶液分配到大量独立的微室中并且进行扩增反应,通过统计反应室中的阳性信号来定量DNA的拷贝数。采用数字PCR技术对噬菌体λDNA的含量进行测定,并对测定结果进行不确定... 数字PCR是一项不依赖校准物的DNA绝对定量技术,将含有DNA模板的反应溶液分配到大量独立的微室中并且进行扩增反应,通过统计反应室中的阳性信号来定量DNA的拷贝数。采用数字PCR技术对噬菌体λDNA的含量进行测定,并对测定结果进行不确定度评定。结果显示,由数字PCR测得的λDNA的含量为(2.43±0.35)μg/管(k=2),该结果与同位素稀释质谱法测量结果相吻合。 展开更多
关键词 数字PCR DNA含量 不确定度
下载PDF
Fitting dynamic models to epidemic outbreaks with quantified uncertainty:A primer for parameter uncertainty,identifiability,and forecasts 被引量:10
5
作者 Gerardo Chowell 《Infectious Disease Modelling》 2017年第3期379-398,共20页
Mathematical models provide a quantitative framework with which scientists can assess hypotheses on the potential underlying mechanisms that explain patterns in observed data at different spatial and temporal scales,g... Mathematical models provide a quantitative framework with which scientists can assess hypotheses on the potential underlying mechanisms that explain patterns in observed data at different spatial and temporal scales,generate estimates of key kinetic parameters,assess the impact of interventions,optimize the impact of control strategies,and generate forecasts.We review and illustrate a simple data assimilation framework for calibrating mathematical models based on ordinary differential equation models using time series data describing the temporal progression of case counts relating,for instance,to population growth or infectious disease transmission dynamics.In contrast to Bayesian estimation approaches that always raise the question of how to set priors for the parameters,this frequentist approach relies on modeling the error structure in the data.We discuss issues related to parameter identifiability,uncertainty quantification and propagation as well as model performance and forecasts along examples based on phenomenological and mechanistic models parameterized using simulated and real datasets. 展开更多
关键词 Parameter estimation uncertainty quantification BOOTSTRAP Parameter identifiability Model performance Forecasts uncertainty propagation
原文传递
数据稀缺与更新条件下基于概率密度演化-测度变换的认知不确定性量化分析 被引量:8
6
作者 万志强 陈建兵 《工程力学》 EI CSCD 北大核心 2020年第1期34-42,共9页
工程设计中往往需要同时处理固有不确定性与认知不确定性。对于固有不确定性分析与量化,国内外已有诸多研究,例如 Monte Carlo 方法、正交多项式展开理论和概率密度演化理论等。而对认知不确定性、特别是固有不确定性与认知不确定性耦... 工程设计中往往需要同时处理固有不确定性与认知不确定性。对于固有不确定性分析与量化,国内外已有诸多研究,例如 Monte Carlo 方法、正交多项式展开理论和概率密度演化理论等。而对认知不确定性、特别是固有不确定性与认知不确定性耦合情况下的研究,则还相对缺乏。该文中,针对数据稀缺与数据更新导致的认知不确定性,首先分别引入 Bootstrap 方法和 Bayes 更新方法进行不确定性表征。在此基础上,结合基于概率密度演化-测度变换的两类不确定性量化统一理论新框架,提出了存在认知不确定性情况下的不确定性传播与可靠性分析高效方法及其具体数值算法。由此,给出了基于数据进行工程系统不确定性量化、传播与可靠性分析的基本途径。通过具有工程实际数据的 3 个工程实例分析,包括无限边坡稳定性分析、挡土墙稳定性分析和屋面桁架结构可靠性分析,验证了该文方法的精度和效率。 展开更多
关键词 不确定性量化 认知不确定性 固有不确定性 概率密度演化 概率测度变换
下载PDF
黑索今纯度标准物质的研究 被引量:8
7
作者 张皋 陈智群 +4 位作者 徐敏 贾林 梁忆 任春燕 王琳 《化学分析计量》 CAS 2008年第6期7-11,共5页
通过重结晶法制备出均匀性合格的军用纯度标准物质黑索今(RDX)候选物,采用"杂质减除法"对标准物质进行定值,用电位滴定法对定值结果进行验证。RDX标准物质的纯度值为99.69%,其扩展不确定度为0.03%(k=2)。
关键词 黑索今 标准物质 定值 不确定度
下载PDF
爆轰模拟不确定度的量化方法 被引量:7
8
作者 马智博 郑淼 +2 位作者 殷建伟 胡杰 魏兰 《计算物理》 EI CSCD 北大核心 2011年第1期66-74,共9页
通过对数值模拟不确定度产生机制的理论分析以及对不确定度从考核区到应用区发展趋势的反演,展示数值模拟不确定度量化评估的关键技术.基于工程设计的现实需求和数值模拟中验证与确认的思想,提出数值模拟用于对爆轰系统进行科学预测时... 通过对数值模拟不确定度产生机制的理论分析以及对不确定度从考核区到应用区发展趋势的反演,展示数值模拟不确定度量化评估的关键技术.基于工程设计的现实需求和数值模拟中验证与确认的思想,提出数值模拟用于对爆轰系统进行科学预测时不确定度的评估框架,并结合实例对方法进行演示和验证. 展开更多
关键词 数值模拟不确定度 不确定度的量化 验证与确认 可靠性认证
下载PDF
分布式多元随机动态场景生成及快速精准场景降维算法 被引量:6
9
作者 张辰毓 许刚 《电网技术》 EI CSCD 北大核心 2022年第2期671-679,共9页
高比例新能源及多源耦合是电力系统发展的重要特征,这也为系统稳定经济运行提出了新挑战。该文以园区型多能系统为对象,研究了分布式多元随机动态场景分析,从多时空角度有效量化不确定因素给系统造成的影响,可为系统灵活重构、多维度协... 高比例新能源及多源耦合是电力系统发展的重要特征,这也为系统稳定经济运行提出了新挑战。该文以园区型多能系统为对象,研究了分布式多元随机动态场景分析,从多时空角度有效量化不确定因素给系统造成的影响,可为系统灵活重构、多维度协同运行与决策提供有力模型与场景支撑。首先由预测误差驱动拟合多元功率预测误差概率分布,全面反映随机功率出力信息,提高模型泛化性;以时序相关范围参数为数据驱动关联变量,高效动态控制波动强度;最终场景生成利用逆变换映射思想保证置信度。然后针对典型场景提取,提出一种综合递归聚类思想的多段嵌套削减算法,结合改进Wasserstein距离指标,兼具准确、时效、稳定方面的优势。最后由对比实验论证该方法的前沿有效性。 展开更多
关键词 量化不确定性 数据驱动 多场景生成 场景削减 改进Wasserstein距离
下载PDF
弹体结构高置信度内载荷不确定传播分析 被引量:1
10
作者 邱宇 谢冯启 +2 位作者 李哲 王磊 邱志平 《强度与环境》 CSCD 2023年第1期14-21,共8页
弹体结构内载荷的准确预示是导弹飞行器载荷设计的重要一环。本文针对弹体结构构建了一种高置信度的载荷不确定传播分析方法。首先基于非概率贝叶斯更新策略,构建了结构内载荷不确定输入参数区间模型后验概率的迭代过程,以获得不同区间... 弹体结构内载荷的准确预示是导弹飞行器载荷设计的重要一环。本文针对弹体结构构建了一种高置信度的载荷不确定传播分析方法。首先基于非概率贝叶斯更新策略,构建了结构内载荷不确定输入参数区间模型后验概率的迭代过程,以获得不同区间模型的置信度。利用所筛选的最优置信度的不确定输入参数模型,基于勒让德正交多项式建立结构内载荷响应函数的近似函数,根据近似函数的零点特性求得载荷响应的区间上下界。结果表明本文方法能够为导弹飞行器结构载荷设计提供技术支撑。 展开更多
关键词 不确定性量化 区间不确定性 非概率贝叶斯 勒让德正交多项式
下载PDF
翼型不确定性量化中正交匹配追踪的应用 被引量:1
11
作者 胡汉铎 宋彦萍 +3 位作者 俞建阳 刘瑶 陈浮 高文秀 《航空学报》 EI CAS CSCD 北大核心 2023年第18期119-131,共13页
不确定性在实际系统中广泛存在,为了研究不确定性因素影响下系统输出的随机响应特性,传统的不确定性量化方法如蒙特卡洛采样、混沌多项式展开等需要大量的样本,制约了在飞机机翼等复杂系统中的应用。近年来,在信号处理领域发展迅速的压... 不确定性在实际系统中广泛存在,为了研究不确定性因素影响下系统输出的随机响应特性,传统的不确定性量化方法如蒙特卡洛采样、混沌多项式展开等需要大量的样本,制约了在飞机机翼等复杂系统中的应用。近年来,在信号处理领域发展迅速的压缩感知技术,利用原始信号的稀疏性可以用少量的样本精确重构信号。这一特性促使研究人员探索将压缩感知技术应用于不确定性量化研究中。以RAE2822实际翼型为研究对象,使用类函数/形函数变换将原始翼型参数化,考虑加工、装配过程和实际飞行工况下的几何不确定性,将压缩感知技术与混沌多项式展开相结合,利用正交匹配追踪算法实现多项式系数的稀疏重构,获得翼型气动力系数和流场参数在考虑几何不确定性影响下的均值和标准差,并与蒙特卡洛采样和满秩概率配点法获得的结果进行对比。通过对收敛性能、样本数需求和重构精度等方面的对比分析表明,正交匹配追踪算法能够利用相对较少的样本获得与传统不确定性量化方法相近的精度。考虑到实际系统的随机响应在混沌多项式基底上大多具有稀疏的展开形式,因此将压缩感知技术应用到不确定性量化中可以显著降低样本数需求,从而降低时间成本,提高计算效率。 展开更多
关键词 压缩感知 正交匹配追踪 混沌多项式展开 不确定性量化 翼型不确定性 类函数/形函数变换
原文传递
基于生成对抗网络的数据不确定性量化方法 被引量:1
12
作者 王昊 王子成 +1 位作者 张超 马韵升 《计算机应用》 CSCD 北大核心 2023年第4期1094-1101,共8页
针对直接使用高维、高频、含有噪声的现实世界数据进行数据处理时会导致估计器不可靠的问题,提出一种基于生成对抗网络(GAN)的数据不确定性量化方法。首先,通过GAN重构原始数据分布,构建噪声空间到原始数据空间的映射分布;其次,使用马... 针对直接使用高维、高频、含有噪声的现实世界数据进行数据处理时会导致估计器不可靠的问题,提出一种基于生成对抗网络(GAN)的数据不确定性量化方法。首先,通过GAN重构原始数据分布,构建噪声空间到原始数据空间的映射分布;其次,使用马尔可夫链蒙特卡洛(MCMC)方法抽取样本,从而得到基于原始数据分布的新样本;然后,基于指定的函数定义样本的不确定性置信区间;最后,使用置信区间对原始数据进行不确定性估计,并选择置信区间内的数据作为估计器使用的数据。实验结果表明,与使用原始数据相比,使用置信区间内的数据进行估计器训练达到性能上限所需要的样本数减少了50%;同时,对比原始训练数据,置信区间内的数据在达到相同测试精度时所需要的样本数平均降低了30%。 展开更多
关键词 生成对抗网络 不确定性量化 马尔可夫链蒙特卡洛方法 置信区间 不确定性估计
下载PDF
A Robust Blade Design Method based on Non-Intrusive Polynomial Chaos Considering Profile Error 被引量:4
13
作者 GAO Limin MA Chi CAI Yutong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第5期875-885,共11页
To weaken the influence of profile error on compressor aerodynamic performance, especially on pressure ratio and efficiency, a robust design method considering profile error is built to improve the robustness of aerod... To weaken the influence of profile error on compressor aerodynamic performance, especially on pressure ratio and efficiency, a robust design method considering profile error is built to improve the robustness of aerodynamic performance of the blade. The characteristics of profile error are random and small-scaled, which means that to evaluate the influence of profile error on blade aerodynamic performance is a time-intensive and high-precision work. For this reason, non-intrusive polynomial chaos(NIPC) and Kriging surrogate model are introduced in this robust design method to improve the efficiency of uncertainty quantification(UQ) and ensure the evaluate accuracy. The profile error satisfies the Gaussian distribution, and NIPC is carried out to do uncertainty quantification since it has advantages in prediction accuracy and efficiency to get statistical behavior of random profile error. In the integrand points of NIPC, several surrogate models are established based on Latin hypercube sampling(LHS)+ Kriging, which further reduces the costs of optimization design by replacing calling computational fluid dynamic(CFD) repeatedly. The results show that this robust design method can significantly improve the performance robustness in shorter time(40 times faster) without losing accuracy, which is meaningful in engineering application to reduce manufacturing cost in the premise of ensuring the aerodynamic performance. Mechanism analysis of the robustness improvement samples carried out in current work can help find out the key parameter dominating the robustness under the disturbance of profile error, which is meaningful to further improvement of compressor robustness. 展开更多
关键词 ROBUST design non-intrusive POLYNOMIAL CHAOS aerodynamic performance RANDOM PROFILE ERROR uncertainty quantification
原文传递
Fourth-Order Predictive Modelling: II. 4th-BERRU-PM Methodology for Combining Measurements with Computations to Obtain Best-Estimate Results with Reduced Uncertainties
14
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期439-475,共37页
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com... This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures. 展开更多
关键词 Fourth-Order Predictive Modeling Data Assimilation Data Adjustment uncertainty quantification Reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. I: Deterministically Incorporated Computational Model (2nd-BERRU-PMD)
15
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期236-266,共31页
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met... This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses. 展开更多
关键词 Second-Order Predictive Modeling Data Assimilation Data Adjustment uncertainty quantification Reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. II: Probabilistically Incorporated Computational Model (2nd-BERRU-PMP)
16
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期267-294,共28页
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par... This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses. 展开更多
关键词 Second-Order Predictive Modeling Data Assimilation Data Adjustment uncertainty quantification Reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. III: Illustrative Application to a Reactor Physics Benchmark
17
作者 Ruixian Fang Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期295-322,共28页
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ... This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of 展开更多
关键词 Second-Order Predictive Modeling OECD/NEA Reactor Physics Benchmark Data Assimilation Best-Estimate Results uncertainty quantification Reduced Predicted Uncertainties
下载PDF
A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy 被引量:1
18
作者 龙杰 宋惟然 +1 位作者 侯宗余 王哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期82-89,共8页
Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superp... Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) quantification uncertainty univariate/multivariate analysis matrix effects temperature matching
下载PDF
流域水文模型参数不确定性量化技术研究进展 被引量:1
19
作者 刘希琛 阚光远 梁珂 《山东农业大学学报(自然科学版)》 北大核心 2023年第3期468-476,共9页
流域水文模型参数存在不确定性,不确定性对模型模拟与预测的精度产生显著影响。如何科学量化参数不确定性并分析其产生的不良影响是水文模拟中亟待解决的重要难题。为了研究这一问题,回顾和归纳了不确定性量化研究领域涉及的方法与技术... 流域水文模型参数存在不确定性,不确定性对模型模拟与预测的精度产生显著影响。如何科学量化参数不确定性并分析其产生的不良影响是水文模拟中亟待解决的重要难题。为了研究这一问题,回顾和归纳了不确定性量化研究领域涉及的方法与技术,讨论了不确定性研究各环节中的成熟成果与亟待解决的问题。最后,对流域水文模型参数不确定性量化技术的应用前景进行了展望。 展开更多
关键词 水文模型 量化技术 不确定性分析
下载PDF
Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation 被引量:2
20
作者 Cheng Chen Weijie Xu +1 位作者 Tong Guo Kai Chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期713-725,共13页
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural respo... Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay. 展开更多
关键词 real-time hybrid simulation actuator delay polynomial chaos expansion delay differential equation uncertainty quantification
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部