A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-...A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18μm RF CMOS process with an area of 1.74 mm^2 and only consumes 32 mA current (at 1.8 V) including the test associated parts.展开更多
We present a novel homodyne frequency-shifting interference pattern locking system to enhance the exposure contrast of interference lithography and scanning beam interference lithography(SBIL). The novel interferenc...We present a novel homodyne frequency-shifting interference pattern locking system to enhance the exposure contrast of interference lithography and scanning beam interference lithography(SBIL). The novel interference pattern locking system employs a special homodyne redundant phase measurement interferometer(HRPMI) as the sensor and an acousto-opto modulator(AOM) as the actuator. The HRPMI offers the highly accurate value as well as the direction recognition of the interference pattern drift from four quadrature interference signals. The AOM provides a very fine resolution with a high speed for phase modulation. A compact and concise system with a short optical path can be achieved with this new scheme and a small power laser head in tens of microwatts is sufficient for exposure and phase locking, which results in a relatively low-cost system compared with the heterodyne system. More importantly, the accuracy of the system is at a high level as well as having robustness to environmental fluctuation. The experiment results show that the short-time(4 s) accuracy of the system is 0.0481 rad e3σT at present. Moreover, the phase of the interference pattern can also be set arbitrarily to any value with a high accuracy in a relatively large range, which indicates that the system can also be extended to the SBIL application.展开更多
提出一种在欠采样条件下的经过混合结构设计的射频发射机线性化方法。该方法基于欠采样频率选择性的非线性模型来校正调制器产生的镜像干扰信号以及射频功率放大器的互调失真信号。实验结果表明LTE的70 MHz双载波信号在发射机采样速率从...提出一种在欠采样条件下的经过混合结构设计的射频发射机线性化方法。该方法基于欠采样频率选择性的非线性模型来校正调制器产生的镜像干扰信号以及射频功率放大器的互调失真信号。实验结果表明LTE的70 MHz双载波信号在发射机采样速率从491.52 Ms/s降低至122.88 Ms/s时使用该组合方法较之前方法有10 d B的归一化最小均方误差改善以及10 d B的邻道功率泄露比抑制改善。展开更多
基金supported by the National Eleven-Five Project Funding(No.51308020403)the Science and Technology Commission of Shanghai Municipality(No.08706200700)the National High Technology Research and Development Program of China(No.2009AA01Z261)
文摘A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18μm RF CMOS process with an area of 1.74 mm^2 and only consumes 32 mA current (at 1.8 V) including the test associated parts.
基金supported by the Foundation of the State Key Laboratory of Tribology at China(No.SKLT2014C01)the National Nature Science Foundation of China(No.51475262)the Autonomous Scientific Research Project of Tsinghua University at China(No.20151080363)
文摘We present a novel homodyne frequency-shifting interference pattern locking system to enhance the exposure contrast of interference lithography and scanning beam interference lithography(SBIL). The novel interference pattern locking system employs a special homodyne redundant phase measurement interferometer(HRPMI) as the sensor and an acousto-opto modulator(AOM) as the actuator. The HRPMI offers the highly accurate value as well as the direction recognition of the interference pattern drift from four quadrature interference signals. The AOM provides a very fine resolution with a high speed for phase modulation. A compact and concise system with a short optical path can be achieved with this new scheme and a small power laser head in tens of microwatts is sufficient for exposure and phase locking, which results in a relatively low-cost system compared with the heterodyne system. More importantly, the accuracy of the system is at a high level as well as having robustness to environmental fluctuation. The experiment results show that the short-time(4 s) accuracy of the system is 0.0481 rad e3σT at present. Moreover, the phase of the interference pattern can also be set arbitrarily to any value with a high accuracy in a relatively large range, which indicates that the system can also be extended to the SBIL application.
文摘提出一种在欠采样条件下的经过混合结构设计的射频发射机线性化方法。该方法基于欠采样频率选择性的非线性模型来校正调制器产生的镜像干扰信号以及射频功率放大器的互调失真信号。实验结果表明LTE的70 MHz双载波信号在发射机采样速率从491.52 Ms/s降低至122.88 Ms/s时使用该组合方法较之前方法有10 d B的归一化最小均方误差改善以及10 d B的邻道功率泄露比抑制改善。