期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
线性等式约束多目标规划的一个降维算法(英文) 被引量:6
1
作者 袁松琴 李泽民 《运筹学学报》 CSCD 北大核心 2005年第1期70-74,共5页
本文提出具有线性等式约束多目标规划问题的一个降维算法.当目标函数全是二次或线性但至少有一个二次型时,用线性加权法转化原问题为单目标二次规划,再用降维方法转化为求解一个线性方程组.若目标函数非上述情形,首先用线性加权法将原... 本文提出具有线性等式约束多目标规划问题的一个降维算法.当目标函数全是二次或线性但至少有一个二次型时,用线性加权法转化原问题为单目标二次规划,再用降维方法转化为求解一个线性方程组.若目标函数非上述情形,首先用线性加权法将原问题转化为具有线性等式约束的非线性规划,然后,对这一非线性规划的目标函数二次逼近,构成线性等式约束二次规划序列,用降维法求解,直到满足精度要求为止. 展开更多
关键词 线性等式约束 多目标规划 降维算法 二次型 非线性规划 求解 二次规划 线性加权法 问题 目标函数
下载PDF
准同步采样法在配电综合测控仪中的应用 被引量:9
2
作者 曹晖 袁世英 +1 位作者 易珺 曹东 《继电器》 CSCD 北大核心 2005年第17期45-48,57,共5页
通过研究准同步采样法,分析准同步采样法准确度与频率偏差的关系,提出通过减少频率偏差来提高准同步采样法准确度的两种方法,提出准确计算信号频率的公式。计算机仿真结果表明该方法能有效提高测量信号的有效值和谐波的准确度。最后把... 通过研究准同步采样法,分析准同步采样法准确度与频率偏差的关系,提出通过减少频率偏差来提高准同步采样法准确度的两种方法,提出准确计算信号频率的公式。计算机仿真结果表明该方法能有效提高测量信号的有效值和谐波的准确度。最后把准同步采样法应用于配电综合测控仪中,进行硬件和软件设计,实现了仪器体积小,抗干扰能力强,而且测量速度快,测量精度高的目标。 展开更多
关键词 准同步采样 配电综合测控仪 变频采样法 二次逼近法
下载PDF
A Novel Class of Energy-Preserving Runge-Kutta Methods for the Korteweg-de Vries Equation
3
作者 Yue Chen Yuezheng Gong +1 位作者 Qi Hong Chunwu Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第3期768-792,共25页
In this paper,we present a quadratic auxiliary variable approach to develop a new class of energy-preserving Runge-Kutta methods for the Korteweg-de Vries equation.The quadratic auxiliary variable approach is first pr... In this paper,we present a quadratic auxiliary variable approach to develop a new class of energy-preserving Runge-Kutta methods for the Korteweg-de Vries equation.The quadratic auxiliary variable approach is first proposed to reformulate the original model into an equivalent system,which transforms the energy conservation law of the Korteweg-de Vries equation into two quadratic invariants of the reformulated system.Then the symplectic Runge-Kutta methods are directly employed for the reformulated model to arrive at a new kind of time semi-discrete schemes for the original problem.Under consistent initial conditions,the proposed methods are rigorously proved to maintain the original energy conservation law of the Korteweg-de Vries equation.In addition,the Fourier pseudo-spectral method is used for spatial discretization,resulting in fully discrete energy-preserving schemes.To implement the proposed methods effectively,we present a very efficient iterative technique,which not only greatly saves the calculation cost,but also achieves the purpose of practically preserving structure.Ample numerical results are addressed to confirm the expected order of accuracy,conservative property and efficiency of the proposed algorithms. 展开更多
关键词 quadratic auxiliary variable approach symplectic Runge-Kutta scheme energypreserving algorithm Fourier pseudo-spectral method
原文传递
Semi-Implicit Spectral Deferred Correction Method Based on the Invariant Energy Quadratization Approach for Phase Field Problems 被引量:3
4
作者 Ruihan Guo Yan Xu 《Communications in Computational Physics》 SCIE 2019年第6期87-113,共27页
This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start wi... This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start with the linear scheme,which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable.The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable.Moreover,the scheme leads to linear algebraic system to solve at each iteration,and we employ the multigrid solver to solve it efficiently.Numerical re-sults are given to illustrate that the combination of local discontinuous Galerkin(LDG)spatial discretization and the high order temporal scheme is a practical,accurate and efficient simulation tool when solving phase field problems.Namely,we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations. 展开更多
关键词 Phase field problems local discontinuous Galerkin method linear scheme invariant energy quadratization approach semi-implicit spectral deferred correction method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部