期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
几类B值拟鞅空间上的原子分解 被引量:2
1
作者 王俊俊 侯友良 《应用泛函分析学报》 CSCD 2009年第1期39-46,共8页
设1<p2,0<α1,X是p一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHασ(X)存在分解fn=sum form k∈Z to μkank(n≥0),并且‖f‖pHασ(X)+‖R(f)‖α~inf(sum form k∈Z to μkα)1/α,这里ak=(ank)n5≥0(k∈Z)是一... 设1<p2,0<α1,X是p一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHασ(X)存在分解fn=sum form k∈Z to μkank(n≥0),并且‖f‖pHασ(X)+‖R(f)‖α~inf(sum form k∈Z to μkα)1/α,这里ak=(ank)n5≥0(k∈Z)是一列(1,α,∞;p)拟鞅原子,并且在L1中收敛,supk∈Z‖ak*‖α<∞,(μk)k∈Z∈lα是非负实数列.对于拟鞅空间pHαS(X)和qKα(X)成立类似的结果.此外,利用拟鞅原子分解定理,证明了几个拟鞅不等式. 展开更多
关键词 拟鞅 原子分解 p一致光滑空间 q一致凸空间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部