Pyrolysis of biomass followed by combustion of pyrolytic vapors to replace fossil fuels is an economic low-carbon solution.However,the polycyclic aromatic hydrocarbons and N-containing species in biomass pyrolysis vap...Pyrolysis of biomass followed by combustion of pyrolytic vapors to replace fossil fuels is an economic low-carbon solution.However,the polycyclic aromatic hydrocarbons and N-containing species in biomass pyrolysis vapors result in the soot and NO emissions.The flue gas recirculation(FGR)technology,having the potential to reduce the soot and NO emissions,was introduced to the biomass pyrolysis-combustion system.In addition,it was numerically studied by simulating the biomass pyrolysis vapors based co-flow diffusion flames with CO_(2)addition.Both the experimental and simulated results showed that the FGR had significant suppression effects on the soot formation.When the FGR ratio(i.e.,CO_(2)addition ratio)increased from 0%to 15%,the experimental and simulated soot volume fraction respectively decreased by 32%and 21%,which verified the models used in this study.The decrease in OH concentration caused by the CO_(2)addition was responsible for the decrease in the decomposition rate of A2(A2+OH=A2–+H_(2)O).Hence,more benzo(ghi)fluoranthene(BGHIF)was generated through A1C_(2)H–+A2→BGHIF+H_(2)+H,leading to the increase in inception rate.The decrease in benzo(a)pyrene(BAPYR)concentration was the major factor in the decrease in soot condensation rate.Moreover,the decrease in the C_(2)H_(2) and OH concentrations was responsible for the decrease in the HACA surface growth rate.Furthermore,the simulated results showed that the NO concentration decreased by 0.4%when the content of CO_(2)was increased by 1 vol.%.The decrease in OH concentration suppressed the NO formation via decreasing reaction rates of N+OH=NO+H and HNO+OH=NO+H_(2)O and enhanced the NO consumption via increasing reaction rate of HO_(2)+NO=NO_(2)+OH.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52276185,52276189,and 51976057)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC5008)the Fundamental Research Funds for the Central Universities(Grant No.2020DF01)。
文摘Pyrolysis of biomass followed by combustion of pyrolytic vapors to replace fossil fuels is an economic low-carbon solution.However,the polycyclic aromatic hydrocarbons and N-containing species in biomass pyrolysis vapors result in the soot and NO emissions.The flue gas recirculation(FGR)technology,having the potential to reduce the soot and NO emissions,was introduced to the biomass pyrolysis-combustion system.In addition,it was numerically studied by simulating the biomass pyrolysis vapors based co-flow diffusion flames with CO_(2)addition.Both the experimental and simulated results showed that the FGR had significant suppression effects on the soot formation.When the FGR ratio(i.e.,CO_(2)addition ratio)increased from 0%to 15%,the experimental and simulated soot volume fraction respectively decreased by 32%and 21%,which verified the models used in this study.The decrease in OH concentration caused by the CO_(2)addition was responsible for the decrease in the decomposition rate of A2(A2+OH=A2–+H_(2)O).Hence,more benzo(ghi)fluoranthene(BGHIF)was generated through A1C_(2)H–+A2→BGHIF+H_(2)+H,leading to the increase in inception rate.The decrease in benzo(a)pyrene(BAPYR)concentration was the major factor in the decrease in soot condensation rate.Moreover,the decrease in the C_(2)H_(2) and OH concentrations was responsible for the decrease in the HACA surface growth rate.Furthermore,the simulated results showed that the NO concentration decreased by 0.4%when the content of CO_(2)was increased by 1 vol.%.The decrease in OH concentration suppressed the NO formation via decreasing reaction rates of N+OH=NO+H and HNO+OH=NO+H_(2)O and enhanced the NO consumption via increasing reaction rate of HO_(2)+NO=NO_(2)+OH.