To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular...To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity.展开更多
为了分析注入阶段地下水流速及含水层弥散度对单井注抽试验解析模型测算地下水流速的影响机理,通过采用GMS(groundwater modeling system)软件建立了单井注抽试验数值模型,通过与Leap and Kaplan(1988)近似解析模型计算结果对比分析上...为了分析注入阶段地下水流速及含水层弥散度对单井注抽试验解析模型测算地下水流速的影响机理,通过采用GMS(groundwater modeling system)软件建立了单井注抽试验数值模型,通过与Leap and Kaplan(1988)近似解析模型计算结果对比分析上述因素对解析模型计算结果的影响.研究结果表明:地下水流速越大或自由迁移阶段时间越长,近似解析模型计算的误差越大;注入阶段地下水流速的作用对溶质羽质心迁移的影响较小,故近似解析模型中考虑注入阶段质心位移会导致计算误差增大;含水层弥散度越大,解析模型计算的误差越大.总体而言,注入阶段地下水流速对近似解析模型计算结果影响较小,而弥散度有着显著的影响.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51478120)
文摘To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity.
文摘为了分析注入阶段地下水流速及含水层弥散度对单井注抽试验解析模型测算地下水流速的影响机理,通过采用GMS(groundwater modeling system)软件建立了单井注抽试验数值模型,通过与Leap and Kaplan(1988)近似解析模型计算结果对比分析上述因素对解析模型计算结果的影响.研究结果表明:地下水流速越大或自由迁移阶段时间越长,近似解析模型计算的误差越大;注入阶段地下水流速的作用对溶质羽质心迁移的影响较小,故近似解析模型中考虑注入阶段质心位移会导致计算误差增大;含水层弥散度越大,解析模型计算的误差越大.总体而言,注入阶段地下水流速对近似解析模型计算结果影响较小,而弥散度有着显著的影响.