The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,consi...The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,considering the characteristic of geometrical nonlinear and rheology property of multiphase fluid,the pump performance parameters are studied.Firstly,a dynamics model of annular fluid flow is built.In the detail,a partial differential equation of annular fluid is established and a computing model of fluid pressure gradient is built.Secondly,the simulation models of plunger friction and hydraulic resistance of pump valve are built.Finally,a novel simulation method of fluid pressure in annular space is proposed with software ANSYS.In order to check up the correction of models proposed in this paper,the comparison curves of experiment and simulation results are given.Based on above model,the whole simulation model of plunger pump is simulated with Visual Basic 6.0.The results show that the fluid friction of pump plunger and instantaneous resistance of pump valve are nonlinear.The impact factors of pump performance parameters are analyzed,and their characteristic curves are given,which can help to optimize the pump motion parameters and pump structural.展开更多
Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of...Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.展开更多
基金Projects(ZR2017LEE002,ZR2016HB59)supported by the Natural Science Foundation of Shandong Province,ChinaProject(LYDX2016BS032)supported by the Scientific Research Starting Foundation of Linyi University,China+1 种基金Project(2017YF012)supported by Shandong Agricultural Machinery Equipment Research and Development Innovation,ChinaProjects(201801219003,201802026003)supported by Collaborative Education Project of Industry-Education Cooperation of National Education Ministry,China
文摘The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,considering the characteristic of geometrical nonlinear and rheology property of multiphase fluid,the pump performance parameters are studied.Firstly,a dynamics model of annular fluid flow is built.In the detail,a partial differential equation of annular fluid is established and a computing model of fluid pressure gradient is built.Secondly,the simulation models of plunger friction and hydraulic resistance of pump valve are built.Finally,a novel simulation method of fluid pressure in annular space is proposed with software ANSYS.In order to check up the correction of models proposed in this paper,the comparison curves of experiment and simulation results are given.Based on above model,the whole simulation model of plunger pump is simulated with Visual Basic 6.0.The results show that the fluid friction of pump plunger and instantaneous resistance of pump valve are nonlinear.The impact factors of pump performance parameters are analyzed,and their characteristic curves are given,which can help to optimize the pump motion parameters and pump structural.
文摘Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.