Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed pla...Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed plasma thruster is a structurally simple form of electric propulsion.This simplicity also makes it ideally suited for miniaturization.Its history can be traced back to applications in satellites that are much larger than micro/nano-satellites.The vast majority of modern pulsed plasma thrusters use solid polytetrafluoroethylene(PTFE)as a propellant.Unfortunately,at lower discharge energy levels such as those necessitated by the power limitations of micro/nano-satellites,PTFE has a tendency to exhibit carbon deposition,which can ultimately lead to thruster failure.In this new era of small satellites,it is important to consider alternative propellants in the miniaturization of pulsed plasma thrusters.This brief review discusses the needs and limitations of small satellites and alternative propellants that may be able to meet these needs.Such propellants may be able to offer advantages such as a longer thruster lifetime,a higher specific impulse,or a higher thrust-topower ratio.This would enable the development of different types of pulsed plasma thrusters that can be tailored towards specific mission requirements.展开更多
The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical process...The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical processes of PPTs are described.Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures,discharge circuits,propellant materials,energy discharge method,propellant feed method,ignition method and number of thruster heads influence the PPT performance are presented and analyzed.The ignitor design method,ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs.The modeling methods of the discharge circuit,as well as ablation,ionization and acceleration in PPTs are presented.Finally,the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.展开更多
Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed t...Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.展开更多
As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at ...As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth.展开更多
基金supported by the National Natural Science Foundation of China(No.11802022)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Technological miniaturization has enabled the development of small satellites weighing as little as 1 kg.Unfortunately,there is still a lack of suitable efficient micropropulsion systems at these scales.The pulsed plasma thruster is a structurally simple form of electric propulsion.This simplicity also makes it ideally suited for miniaturization.Its history can be traced back to applications in satellites that are much larger than micro/nano-satellites.The vast majority of modern pulsed plasma thrusters use solid polytetrafluoroethylene(PTFE)as a propellant.Unfortunately,at lower discharge energy levels such as those necessitated by the power limitations of micro/nano-satellites,PTFE has a tendency to exhibit carbon deposition,which can ultimately lead to thruster failure.In this new era of small satellites,it is important to consider alternative propellants in the miniaturization of pulsed plasma thrusters.This brief review discusses the needs and limitations of small satellites and alternative propellants that may be able to meet these needs.Such propellants may be able to offer advantages such as a longer thruster lifetime,a higher specific impulse,or a higher thrust-topower ratio.This would enable the development of different types of pulsed plasma thrusters that can be tailored towards specific mission requirements.
基金supported by National Natural Science Foundation of China (No. 11672039)。
文摘The application and development of pulsed plasma thrusters(PPTs)in recent years are reviewed in this paper.The advantages of PPTs are discussed.The schematics,propulsion performance parameters and key physical processes of PPTs are described.Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures,discharge circuits,propellant materials,energy discharge method,propellant feed method,ignition method and number of thruster heads influence the PPT performance are presented and analyzed.The ignitor design method,ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs.The modeling methods of the discharge circuit,as well as ablation,ionization and acceleration in PPTs are presented.Finally,the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.
基金supported by National Natural Science Foundation of China (Grant No. 11602016)
文摘Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.
基金supported by the Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0339)。
文摘As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth.